首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
admin
2019-04-17
96
问题
(2004年试题,三(8))设有齐次线性方程组
试问a取何值时,该方程组有非零解,并求出其通解
选项
答案
由题设,方程组系数矩阵为[*]经初等行变换可化为[*]当a=0时,r(A)=1<4,则方程组有非0解,同解方程组为x
1
+x
2
+x
3
+x
4
=0,不难求得基础解系为[*]所以原方程组通解为x=C
1
ξ
1
+C
2
ξ
2
+C
3
ξ
3
,其中C
1
,C
2
,C
3
为任意常数.当a≠0时,系数矩阵A可由初等行变换化为[*]由已知原方程组有非0解,则a=一10,且r(A)=3<4,同解方程组为[*]则基础解系为[*]所以原方程组通解为x=Cξ,其中C为任意常数.
解析
本题在求a的取值时,也可通过分析系数矩阵的行列式|A|,即由于方程组有非零解,则|A|=0,可求得a=0或a=一10.余下步骤与原解法中相同.解非齐次线性方程组时,通常化为增广矩阵的问题,但要注意对增广矩阵只能施行初等行变换,不能施行初等列变换.
转载请注明原文地址:https://www.kaotiyun.com/show/0JV4777K
0
考研数学二
相关试题推荐
设x>0时,f(x)可导,且满足:f(x)=1+∫1xf(t)dt,求f(x).
设f(x)=求f[g(x)].
如果F(x)是f(x)的一个原函数,G(x)是的一个原函数,且F(x)G(x)=一1,f(0)=1,求f(x).
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(χ),并求定义域;(Ⅱ)讨论y=y(χ)的可导性与单调性;(Ⅲ)讨论y=y(χ)的凹凸性.
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(1997年试题,一)已知在x=0处连续,则a=_________.
随机试题
发表解肌,升阳透疹的药物是发表透疹,升阳解毒的药物是
机关、团体在一定范围内公布事项的告知性文件是()
传统的护患关系模式是()。
竞选文件的内容不包括( )。
2018年2月,甲公司与乙公司签订1份设备采购合同,价款为2000万元;2个月后因采购合同作废,又改签为融资租赁合同,租赁总额为2100万元。甲公司应缴纳印花税()元。
评估客户投资风险承受度,下列叙述错误的是()。
文书封发的要求中包括()。
校对:印刷:出版相当于()。
下列犯罪中,属于占有型的侵犯财产罪的有()。
A、Hisfriendgavehimthewrongkey.B、Hedidn’tknowwherethebackdoorwas.C、Hecouldn’tfindthekeytohismailbox.D、Itw
最新回复
(
0
)