首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
admin
2019-04-17
118
问题
(2004年试题,三(8))设有齐次线性方程组
试问a取何值时,该方程组有非零解,并求出其通解
选项
答案
由题设,方程组系数矩阵为[*]经初等行变换可化为[*]当a=0时,r(A)=1<4,则方程组有非0解,同解方程组为x
1
+x
2
+x
3
+x
4
=0,不难求得基础解系为[*]所以原方程组通解为x=C
1
ξ
1
+C
2
ξ
2
+C
3
ξ
3
,其中C
1
,C
2
,C
3
为任意常数.当a≠0时,系数矩阵A可由初等行变换化为[*]由已知原方程组有非0解,则a=一10,且r(A)=3<4,同解方程组为[*]则基础解系为[*]所以原方程组通解为x=Cξ,其中C为任意常数.
解析
本题在求a的取值时,也可通过分析系数矩阵的行列式|A|,即由于方程组有非零解,则|A|=0,可求得a=0或a=一10.余下步骤与原解法中相同.解非齐次线性方程组时,通常化为增广矩阵的问题,但要注意对增广矩阵只能施行初等行变换,不能施行初等列变换.
转载请注明原文地址:https://www.kaotiyun.com/show/0JV4777K
0
考研数学二
相关试题推荐
设f(u)有连续的一阶导数,且f(0)=0,求,其中D={(x,y)|x2+y2≤t2}.
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
求微分方程y"+4y’+4y=e-2x的通解.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
(2004年试题,二)设函数f(x)连续,且f’(0)>0,则存在δ>0,使得().
随机试题
記録に残っていないのに、「言った、言わない」でもめ始めると、________。幸い、今はスマートフォンのおかげでボイスレコーダーがすっかり身近になり、トラブルもいささか減ってきたように感じられる。
与机体止血功能无关的项目为()
关于EPS板薄抹灰外墙外保温系统做法,错误的是:
供暖室外计算温度应采用________。
由要素投入增加对经济增长起主导作用的情况即为“()型的经济增长方式”,即高投入、高消耗、低产出、低质量地实现经济增长,注重外延扩张,数量拓展,靠资金和资源的不断投入和积累以支撑经济增长的速度;而主要由要素生产率的提高对经济增长起主导作用的情况则为
下列()属于变造会计凭证的行为。
享受特定减免税优惠进口的钢材,未经海关批准不得擅自出售移作他用。按现行规定海关对其的监管年限为()。
根据《公司法》的规定,设立( ),可以采取募集设立的方式。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.仔细阅读给定资料,按照后面提出的“申论要求”依次作答。二、给定资料1.中国政法大学教授何兵先生最近在媒体上发表《10年以后谁
糖原磷酸化酶经过pH2.7阳离子交换柱,该酶的比活性从2.5U/mg匀浆蛋白质增加到325.5U/mg蛋白质,从这数据可作出的结论是
最新回复
(
0
)