首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设正项数列{an}单调递减,且(—1)nan发散,试问级数是否收敛?并说明理由。
设正项数列{an}单调递减,且(—1)nan发散,试问级数是否收敛?并说明理由。
admin
2017-01-21
87
问题
设正项数列{a
n
}单调递减,且
(—1)
n
a
n
发散,试问级数
是否收敛?并说明理由。
选项
答案
由于正项数列{a
n
}单调递减,因此极限[*]a
n
存在,将极限记为a,则有a
n
≥a,且a≥0.又因为[*](—1)
n
a
n
是发散的,根据交错级数的莱布尼茨判别法可知a>0(否则级数[*](—1)
n
a
n
是收敛的)。已知正项级数{a
n
}单调递减,因此 [*] 而[*]收敛,因此根据比较判别法可知,级数[*]也收敛。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/01H4777K
0
考研数学三
相关试题推荐
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在一个ξ,使f(ξ)=ξ.
(I)因为fˊ(x)简单,先求fˊ(x)的展开式,然后逐项积分得f(x)的展开式.[*]
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续(Ⅲ)f(x,y)在点(xo,yo)处可微(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
求下列函数在指定区域D的最大、最小值:(1)f(x,y)=x2+2xy+3y2,D是以点(-1,1),(2,1),(-1,2)为顶点的闭三角形区域;(2)f(x,y)=sinx+siny+sin(x+y),D为0≤x≤2π,0≤y≤2π;(3)f(x
A、2xe-xB、(一x2+2x)e-xC、e-xD、(2x一1)e-xC一方面,另一方面,比较两个计算结果可知应选C.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设f(x)=xsinx+cosx,下列命题中正确的是().
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
随机试题
劳动规章制度
A.TcB.TsC.ThD.B1E.B2
卫生资源配置中,不符合配置原则的是
A.针晶B.砂晶C.簇晶D.方晶E.柱晶龙胆含
建设单位甲与供货商乙签订了钢材供货合同,合同约定,由供货商送货至施工现场,但未约定运费的负担,后双方对此没有达成补充协议,也不能依其他方法确定。则供货商将钢材送到工地后,该运输费应由()。
2021年1月,甲食品厂与乙超市签订一份长期供货合同,丙公司为乙超市的货款提供保证担保。合同约定了最高担保金额,但没有约定清偿债务期限。2021年4月30日,甲食品厂收到丙公司送来的终止保证合同的书面通知。丙公司的保证期间是()。
就一地而言,地陪是典型的、完全意义上的导游人员。()
张局长找甲、乙、丙三名处长谈话,准备与甲谈10分钟,与乙谈12分钟,与丙谈8分钟。秘书带三人到局办公室后对谈话的顺序做了合理安排,使三人谈话的时间与等待时间之和为最短,则这个最短时间是:
以下对《天朝田亩制度》的评价,正确的有
电子政务根据其服务的对象不同,基本上可以分为四种模式。某政府部门内部的“办公自动化系统”属于______模式。A.G2BB.G2CC.G2ED.G2G
最新回复
(
0
)