首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2019-03-14
71
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,则α
1
,α
2
,…,α
n
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
n
,,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0只有零解,故α
1
,α
2
,…,α
n
线性无关,选项A正确。对于选项B,由α
1
,α
2
,…,α
r
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此选项B是错误的。选项C是教材中的定理。由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知选项D也是正确的。综上可知,应选B。
转载请注明原文地址:https://www.kaotiyun.com/show/zOj4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设χ∈[0,a]时f(χ)连续且f(χ)>0(χ∈(0,a]),又满足f(χ)=,求f(χ).
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=.
求曲线χ=acos3t,y=asin3t绕直线y=χ旋转一周所得曲面的面积.
设A,B都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
求微分方程y"(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
随机试题
胆囊息肉样病变包括
最可能的诊断是经治疗6月后患者眼位,角膜映光OD+15°,下一步治疗考虑
A.舌喷淡白B.舌色淡红C.舌质紫暗D.舌质绛红E.舌起粗大红刺气血瘀滞证的舌象是
下列高分子材料中,主要作肠溶衣的是
根据《注册建造师施工管理签章文件目录》,属于房屋建筑工程施工进度管理文件类别的是()。
债券投资不能收回的情况有()
不屈于《中国人民银行法》中确定的货币政策工具是()。
甲公司为上市公司。20×7年至20×9年,甲公司及其子公司发生的有关交易或事项如下:(1)20×7年1月1日,甲公司以30500万元从非关联方购入乙公司60%的股权,购买日乙公司可辨认净资产的公允价值为50000万元(含原未确认的无形资产公允价值300
以下所有权的取得方式中,属于继受取得的是()
AnnualPerformanceReviewsIntheory,annualperformancereviewsareconstructiveandpositiveinteractionsbetweenmanagers
最新回复
(
0
)