首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x) 一f(x)g’(x) <0,则当a<x<b时有
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x) 一f(x)g’(x) <0,则当a<x<b时有
admin
2017-04-24
89
问题
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x) 一f(x)g’(x) <0,则当a<x<b时有
选项
A、f(x)g(b)>f(b)g(x)
B、f(x)g(a)> f(a)g(x)
C、f(x)g(x)>g(b)f(b)
D、f(x)g(x)>f(a)g(a)
答案
A
解析
由f’(x)g(x)一f(x)g’(x)<0, a<x<b
可知
<0, a<x<b
则
在(a,b)内单调减,从而应有
即 f(x)g(b)>f(b)g(x).故应选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/vAt4777K
0
考研数学二
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’"(ξ)=3.
y=x22x,则y’=________.
设f(x)二阶可导,x=1为f(x)的极值点,且f(x)满足f"(x)+f’(x)=1+x-ex,则x=1为f(x)的________(填极大值点或极小值点).
证明方程ex=-x2+ax+b不可能有三个不同的根.
函数f(x)=x2-3x+4在[1,2]上满足罗尔定理的中值ξ=________.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的
随机试题
根据下图所示网络结构回答问题。 如果在不改变路由表项的前提下,在路由器RE和RF最多总共可再接入的路由器数量是________。
Treesareusefultomaninthreeimportantways:theyprovidehimwithwoodandotherproducts;theygivehimshade;andtheyhe
下列各项中,属于税收规章的是()。
一种具有法律约束力的中期周转性票据发行融资的承诺是()。
我国消费者协会是依法成立的对商品和服务进行社会监督的保护消费者合法权益的()。
A、 B、 C、 D、 C封闭空间数4
以国共两党第二次合作为基础的抗日民族统一战线正式形成的主要标志是()
由于工作关系,难得与朋友相聚。
【B1】【B6】
A、Hostandguest.B、Doctorandpatient.C、Managerandofficeworker.D、Travelagentandcustomer.C解答本题的关键在于听清并理解男士的话Didyoufil
最新回复
(
0
)