首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程xa=ln x(a<0)在(0,+∞)上有且仅有一个实根.
证明:方程xa=ln x(a<0)在(0,+∞)上有且仅有一个实根.
admin
2019-06-28
62
问题
证明:方程x
a
=ln x(a<0)在(0,+∞)上有且仅有一个实根.
选项
答案
令f(x)=ln x—x
α
,则f(x)在(0,+∞)上连续,且f(1)=一1<0,[*]X>1,当x>X时,有f(x)>M>0,任取x
0
>X,则f(1)f(x
0
)<0,根据零点定理,[*]ξ∈(1,x
0
),使得f(ξ)=0,即方程x
α
=ln x在(0,+∞)上至少有一实根.又ln x在(0,+∞)上单调增加,因α<0,一x
α
也单调增加,从而f(x)在(0,+∞)上单调增加,因此方程f(x)=0在(0,+∞)上只有一个实根,即方程x
α
=ln x在(0,+∞)上只有一个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xaV4777K
0
考研数学二
相关试题推荐
23.证明:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设二次型f=x12+x22+x32一4x1x2一4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求a,b的值;
使函数f(x)=2x3-9x+12x-a恰好有两个不同的零点的a等于
函数f(χ)=χ3-3χ+k只有一个零点,则k的范围为().
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
用泰勒公式求下列极限:
随机试题
以下严禁装药爆破的情况是()。
某电脑公司为了赢得顾客的信赖,扩大市场份额,采取了一系列措施,例如加强产品质量宣传,进行市场调查,收集顾客反馈信息,增加售后服务网点,通过质量管理体系认证。以下是顾客满意的基本特性的是_________。
研究耐盐碱的海水稻.有助于突破我国18亿亩有限的耕地资源约束,并在很大程度上缓解人类水资源、可耕地和粮食三大危机。下列关于海水稻的说法,错误的是()。
关于马克思主义法学对法的本质的界定,下列说法正确的是
各地中国共产党早期组织成立以后,主要进行的工作有()
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.Itisnoteasytoexplainwhyoneperson
Youwillhearfiveshortrecordings.Fivespeakersaretalkingaboutdelegatingatwork.Foreachrecording,decidewhatadvice
—"TheGreenswatchTVallthetime."—"______dotheBrowns."
ResearchersfromtheUniversityofPlymouthinEnglandwonderedwhethermoodmightaffectthewaykidslearn.Tofindout,they
I’msorrytosaythatyouhavemadeno(improve)______onthedesignatall.
最新回复
(
0
)