首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求 a,b的值;
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求 a,b的值;
admin
2018-02-07
73
问题
已知A,B为三阶非零矩阵,且A=
。β
1
=(0,1,一1)
T
,β
2
=(0,2,1)
T
,β
3
=(6,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且AX=β
3
有解。求
a,b的值;
选项
答案
由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由AX=β
3
有解可知,线性方程组Ax=β
3
,的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 (A,β
3
)=[*], 所以b=5,a=3b=15。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KHk4777K
0
考研数学二
相关试题推荐
[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
_______客户具有高度的满意度,但同时转换度也非常高,他们对价格和促销非常敏感。
“肾衰竭指数”指
杜仲与续断的共同功效是
患儿体温38.7℃,可采用的最佳降温方法是青霉素皮试阴性后,肌内注射应选择的最佳部位是
下列各项中关于账簿的选择,说法正确的是()。
以下说法不正确的是( )。
根据《行政诉讼法》的相关规定,下列说法错误的是:
在一项关于求职人员的调查中,2/5的人承认至少有一些不诚实。然而,这项调查可能低估了有不诚实行为的求职人员的比例,因为______。以下哪一选择能最好地完成上面的短文?()
查询包括【】、删除查询、生成表查询和选择查询4种。
CosmeticSurgerySurgerythatcanimprovethewayapersonlooksisbecomingmoreandmorepopularintheUnitedStates.Th
最新回复
(
0
)