首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T, 求矩阵A;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T, 求矩阵A;
admin
2014-02-06
135
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η
1
=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,又知齐次方程组Bx=0的基础解系是β
1
=(1,1,2,1)
T
,β
2
=(0,一3,1,a)
T
,
求矩阵A;
选项
答案
记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
X=0的解.对CT作初等行变换,有[*]得到C
T
x=0基础解系为α
1
=(3,一1,1,0)
T
,α
2
=(一5,1,0,1)
T
.所以矩阵[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tt54777K
0
考研数学一
相关试题推荐
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,一1,3,3)T,b2=(0,1,一1,一1)T所生成的向量空间记作L2,试证L1=L2.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及,其中E为3阶单位矩阵.
设f(x)的导函数为,则f(x)的一个原函数是()
设有方程y“+(4x+e2y)(y‘)3=0.将方程转化为x为因变量,y作为自变量的方程;
设有n元二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在ξ∈(a,b),使得;
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
一容器内表面是由曲线y=x2(0≤x≤2,单位:m)绕y轴旋转一周所得到的曲面.现以2m3/min的速率注入某液体.求:当液面升高到1m时液面上升的速率.
设则下列选项中是A的特征向量的是().
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,Y1)及(X2,Y2)的分布.
随机试题
门一腔静脉交通支中,最重要的是
总分类账必须采用订本式的三栏式账户。()
下列关于每股收益说法正确的是()。Ⅰ.基本每股收益是按照归属于普通股股东的当期净利润,除以当期实际发行在外的普通股的加权平均数计算确定Ⅱ.同一控制下的合并,加权平均股数的确认时点为通过股东大会决议时Ⅲ.因债务转资本而发
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
二次型χTAχ正定的充要条件是
FortenyearstheGreeks______thecityofTroytoseparateitfromtheoutside.
有以下程序:#include<stdio.h>main(){inti=1,j=1,k=2;if((j++||k++)&&i++)printf("%d,%d,%d\n",i,j,k);}执行后输
世界上第一台计算机是1946年在美国研制成功的,其英文缩写名为_______。
MadeleinehadmetLeonardinanupper-levelsemioticsseminartaughtbyarenegadefromtheEnglishdepartment.MichaelZipperst
A、Theearlybirdcatchestheworm.B、Smallthingscanleadtolargeoutcomes.C、Actionsspeaklouderthanwords.D、Donothingby
最新回复
(
0
)