首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
admin
2019-12-06
83
问题
设四阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=B的通解为(1,2,2,1)
T
+c(1,﹣2,4,0)
T
,c为任意常数。记B=(α
3
,α
2
,α
1
,β-α
4
),求Bx=α
1
-α
2
的通解。
选项
答案
从Ax=β的通解为(1,2,2,1)
T
+c(1,﹣2,4,0)
T
可得到以下信息: ①Ax=0的基础解系包含1个解向量,即4-r(A)=1,得r(A)=r(α
1
,α
2
,α
3
,α
4
)=3。 ②(1,2,2,1)
T
是Ax=β的特解,即α
1
+2α
2
+2α
3
+α
4
=β。(1,﹣2,4,0)
T
是Ax=0的解向量,即α
1
-2α
2
+4α
3
=0,则α
1
,α
2
,α
3
线性相关,结合r(A)=3可得r(α
1
,α
2
,α
3
)=2。 显然B((0,﹣1,1,0)
T
=α
1
-α
2
,即(0,﹣1,1,0)
T
是Bx=α
1
-α
2
的一个解。由B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是r(B)=r(α
1
,α
2
,α
3
)=2,则其基础解系包含解向量的个数为2个。 α
1
-2α
2
+4α
3
=0说明(4,﹣2,1,0)
T
是Bx=0的解。由B=(α
3
,α
2
,α
1
,α
1
++2α
2
+2α
3
)容易得到B(﹣2,﹣2,﹣1,1)
T
=0,说明(﹣2,﹣2,﹣1,1)
T
也是Bx=0的解。 于是Bx=α
1
-α
2
的通解为(0,﹣1,1,0)
T
+c
1
(4,﹣2,1,0)
T
+c
2
(﹣2,﹣2,﹣1,1)
T
,c
1
,c
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FTA4777K
0
考研数学二
相关试题推荐
设连续函数z=f(x,y)满足,则dz|(0,1)=______。
设A为n阶可逆矩阵,若A有特征值λ0,则(A*)2+3A*+2E有特征值________
设f(χ)具有连续导数,且F(χ)=∫0χ(χ2-t2)f′(t)dt,若当χ→0时F′(χ)与χ2为等价无穷小,则f′(0)=_______.
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
设f(x,y)在区域D:x2y2≤t2上连续且f(0,0)=4,则=______.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设an=(1)求级数(an+an+2)的值;(2)试证对任意的正数λ,
设抛物线y=ax2+bx+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=ax2+bx+c与抛物线y=一x2+2x所围图形的面积最小,求a,b,c的值.
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
验证函数在[0,2]上满足拉格朗日定理.
随机试题
SJ7-10型双级式减压器的工作压力调节范围为()。
A.硝酸甘油B.硝普钠C.美托洛尔D.依那普利E.维拉帕米急性左心室衰竭首选
腭裂术后瘘孔(复裂)的主要原因是
《中国人民政治协商会议共同纲领》
借贷记账法是以()为理论基础的。
某公司新招聘了一名财务主管,他是业界资深人士。当他接手公司财务工作后,发现本部门一名出纳的工作表现与其以往的绩效记录相差很远。他接手以前,这名员工的绩效考评记录均是优秀,但自他来后,发现这名员工在工作中总是出错,而且还经常违反公司的规章制度。财务主管百思不
个体社会化,是指个体在社会环境影响下,认识和掌握社会事物、社会标准的过程,通过这个过程,个体得以独立地参加社会生活。从社会心理学的角度讲,是指个体在特定的社会情境中,通过自身与社会的双向互动,逐步形成社会心理定向和社会心理模式,学会履行其社会角色,由自然人
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解.
在计算机网络中,表示数据传输可靠性的指标是
ImprovingYourMotivationforLearningEnglishI.TheimportanceofthetechniquesforimprovingmotivationA.Necessityforlea
最新回复
(
0
)