首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2是A的两个线性无关的特征向量,特征值都是2,α3也是A的特征向量,特征值是6.记 ①P=(α2,-α1,α3). ②P=(3α3,α2,α1). ③P=(α1,α1-α2,α3). ④P=(α1,
已知A是3阶矩阵,α1,α2是A的两个线性无关的特征向量,特征值都是2,α3也是A的特征向量,特征值是6.记 ①P=(α2,-α1,α3). ②P=(3α3,α2,α1). ③P=(α1,α1-α2,α3). ④P=(α1,
admin
2019-05-12
82
问题
已知A是3阶矩阵,α
1
,α
2
是A的两个线性无关的特征向量,特征值都是2,α
3
也是A的特征向量,特征值是6.记
①P=(α
2
,-α
1
,α
3
).
②P=(3α
3
,α
2
,α
1
).
③P=(α
1
,α
1
-α
2
,α
3
).
④P=(α
1
,α
2
+α
3
,α
3
).
则满足P
-1
AP=
的是
选项
A、①,④.
B、①,③.
C、②,③.
D、②,④.
答案
B
解析
P
-1
AP=
P的列向量组是A的一组线性无关的特征向量,特征值依次为2,2,6.
④的第2个列向量α
2
+α
3
,不是A的特征向量,④不合要求.②中3α
3
,α
2
,α
1
的特征值依次为6,2,2,②也不合要求.于是选项A,C,D都排除,选B.
转载请注明原文地址:https://www.kaotiyun.com/show/Cu04777K
0
考研数学一
相关试题推荐
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
曲线y=(3x+2)的斜渐近线为_________.
设f(x)=,验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ.
求微分方程y’’+y=x2+3+cosx的通解.
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500.(Ⅰ)求μ的置信度为0.95的置信区间;(Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少?(Ⅲ)如果n=1
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
随机试题
寡头垄断市场又称()。
“事无巨细,皆决于上”的领导组织结构是【】
Thebookisdividedintofourparts.Thefirstpartisthefoundationforallyouronlineactivities,whichintroducesthereade
链球菌感染后引起的风湿性心脏病的发病机制是
惊厥紧急处理首先
()代表了城市规划行政体系中的中央集权型制。
函数f(x)=的定义域为()
一、注意事项1.申论考试,是对分析驾驭材料的能力、解决问题能力、言语表达能力的测试。2.作答参考时限,阅读材料40分钟,作答110分钟。3.仔细阅读给定材料,按照后面提出的“申论要求”依次作答。二、给定资料1.尽管2005
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和(2)单独都不充分,条件(1)和条件(2
请编制程序,其功能是:内存中连续存放着10个无符号8位格雷码表示的数,现将此10个数转换成10个8位二进制数,结果存入内存,其转换方法为二进制数的最高位D[7]与格雷码的最高位G[7]相同,二进制数的其余七位D[k](k=6,…,0)分别为格雷码的位G[k
最新回复
(
0
)