首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是微分方程y’’+(x+1)y’+x2y=ex的满足y(0)=0,3,y’(0)=1的解,并设存在且不为零,则正整数k=________,该极限值=________.
设y(x)是微分方程y’’+(x+1)y’+x2y=ex的满足y(0)=0,3,y’(0)=1的解,并设存在且不为零,则正整数k=________,该极限值=________.
admin
2014-06-11
94
问题
设y(x)是微分方程y
’’
+(x+1)y
’
+x
2
y=e
x
的满足y(0)=0,3,y
’
(0)=1的解,并设
存在且不为零,则正整数k=________,该极限值=________.
选项
答案
[*]
解析
由y(0)=0知,所求极限为
型.
由初始条件y
’
(0)=1,若k=1,则上述极限为0,不符,故k≥2.
但y
’’
(0)=[e
x
一(x+1)y
’
-x
2
y]
x=0
=0,若k=2,则上式极限为0.不符.故k≥3.
但y
’’’
(0)=[(e
x
一(x+1)y
’
一x
2
y)
’
]
x=0
=[e
x
一y
’
-(x+1)y
’’
一2xy一x
2
y
’
]
x=0
=0.若k=3,则上式极限为0,不符,故k≥4.
但y
(4)
(0)=[e
x
一y
’’
一y
’’
一(x+1)y
’’’
一2y一4xy
’
一x
2
y
’’
]
x=0
=1。故知当k=4时.
原式
转载请注明原文地址:https://www.kaotiyun.com/show/2554777K
0
考研数学一
相关试题推荐
设f(x)=x2(2x+|x|),则f(x)在x=0处的最高阶可导的阶数为().
设y0(x)为微分方程xyy’-y2=-x3e-2x满足初始条件y(1)=e-1的特解,则曲线L:y=y0(x)(x≥0)与x轴所围成的区域绕x轴旋转一周而成的体积为_____________.
的斜渐近线为_____________.
设A=(α1,α2,γ1),B=(α1,α2,γ2)皆为3阶矩阵,且|A|=2,|B|=3,则|3A-B|=().
设函数f(x)在(-∞,+∞)内连续,其一阶导函数f’(x)的图形如图所示,并设在f’(x)存在处f"(x)也存在,则曲线y=f(x)的拐点个数为()
设向量组α1=(1,1,1,2)T,α2=(3,a+4,2a+5,a+7)T,α3=(4,6,8,10)T,α4=(2,3,2a+3,5)T;β=(0,1,3,6)T,求:向量组α1,α2,α3,α4的秩及一个极大线性无关组;
设正项级数an收敛,且bn==___________.
设,其中t为参数,求.
设某物体的温度T与时间t满足函数关系:T=a(1-e-kt)+b,其中T的单位是℃,t的单位是min,现将该物体放入200℃的高温介质中:在上一问的条件下若物体温度以2℃/min的速率开始上升,求k。
设n元实二次型f(x1,x2,…,xn)=xTAx,其中A有特征值λ1,λ2,…,λn且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤xTAx≤λnxTx;
随机试题
“多行不义必自毙”一语出自()
下列哪项与乳岩的临床表现不符:
下列关于颌下腺炎的描述,不正确的是
中药水提浓缩液的干燥宜采用注射液空安瓿的干燥宜采用
连锁经营已成为世界零售业发展的主流。某商品流通企业决定由过去的独立经营转向连锁经营。该企业首先建立了一家连锁经营创业店(总店),然后在创业店的基础上进行连锁经营的扩张。该商品流通企业由独立经营转向连锁经营,其实质表现为()。
为使用方便,我们可以将本地信息存储到Internet上,下列选项中属于网络存储的是()。
道德修养是一种自我行为,只求诸己,不求诸人。“君子之自行也,敬人而不必见敬,爱人而不必见爱。敬爱人者,己也;见敬爱者,人也。君子必在己者,不必在人者也”(《吕氏春秋·必己》)。以敬爱他人为例,对他人的尊敬或爱护,只问这种敬与爱是否出自真心,是否做得彻底,而
在VisualFoxPro中,如果希望跳出SCAN…ENDSCAN循环体外执行ENDSCAN后面的语句,应使用
GregLogan:Thesewerethetrialsforthe1988OlympicsinSeoul,Korea.Untilthisdive,Ihadbeenahead.Butnow,somethi
A、Ahalo.B、Asunspot.C、Asundog.D、Arainbow.C关于这种天文现象的名称,这段话里先后出现了两次"sundogs",意思是“幻日,假日”,正确答案是C。
最新回复
(
0
)