首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
admin
2018-05-22
97
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zlk4777K
0
考研数学二
相关试题推荐
λ取何值时,方程组无解?有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设m,n是正整数,则反常积分的收敛性
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设f(u)具有二阶连续导数,且g(x,y)=.
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
A、 B、 C、 D、 B此题若立刻作变换tanx=t或tan,则在0≤x≤2π上不能确定出单值连续的反函数x=ψ(t).可先利用周期性和奇偶性将积分区间缩小,在此小区间上作变换tanx=t.在第2式
设x>0时,可微函数f(x)及其反函数g(x)满足关系式∫0f(x)g(t)dt=则f(x)=_______.
随机试题
纳托尔普指出:“在事实上个人是不存在的,因为人之所以为人,是因为他生活于人群之中,并且参加社会生活。”纳托尔普的这种教育目的论属于()。
身无彩凤双飞翼,________。(李商隐《无题》)
初产妇Rh(一),胎儿Rh(+),分娩时多数是处于
男性,30岁,因高热1周入院。既往尚健康,1年前有注射毒品史。查体:眼结合膜有瘀点,心界不大,心率110次/分,律齐,各瓣膜区未闻及杂音,两肺听诊阳性,足底可见紫红色结节,有压痛。白细胞计数12×109/L,血红蛋白80g/L。尿常规蛋白(+),红细胞8~
某公司成立于2013年1月1日,2013年度实现的净利润为1000万元,分配现金股利550万元,提取盈余公积450万元(所提盈余公积均已指定用途)。2014年实现的净利润为900万元(不考虑计提法定盈余公积的因素)。2015年计划增加投资,所需资金为700
下列行为可能产生正的外部性的是()。
2006年9月1日起实施的新义务教育法明确规定,所有适龄儿童、少年平等接受义务教育,国家、社会、学校、家庭必须予以保障。这也进一步明确义务教育阶段学校的教育计划应具有三个基本特征,分别是()。
[*]
ProlongingHumanLifeProlonginghumanlifehasincreasedthesizeofthehumanpopulation.Manypeoplealivetodaywouldha
Manisalandanimal,butheisalsocloselytiedtothesea.【B1】______historytheseahassurvivedtheneedsofman.Theseaha
最新回复
(
0
)