首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵是满秩的,则直线与直线( )
设矩阵是满秩的,则直线与直线( )
admin
2019-01-14
52
问题
设矩阵
是满秩的,则直线
与直线
( )
选项
A、相交于一点.
B、重合.
C、平行但不重合.
D、异面.
答案
A
解析
设L
1
:
,题设矩阵
是满秩的,则由行列式的性质,可知
故向量(a
1
-b
2
,b
1
-b
2
,c
1
-c
2
)与(a
2
-a
3
,b
2
-b
3
,c
2
-c
3
)线性无关,否则由线性相关的定义知,一定存在不全为零的数走k
1
,k
2
,使得
k
1
(a
1
-a
2
,b
1
-b
2
,c
1
-c
2
)+k
2
(a
2
-a
3
,b
2
-b
3
,c
2
-c
3
)=0,
这样上面行列式经过初等行变换值应为零,产生矛盾.
(a
1
-a
2
,b
1
-b
2
,c
1
-c
2
)与(a-a,b-b,c-c)分别为L
1
,L
2
的方向向量,由方向向量线性相关,两直线平行,可知L
1
,L
2
不平行.又由
得
可见L
1
,L
2
均过点(a
1
-a
2
+a
3
,b
1
-b
2
+b
3
,c
1
-c
2
+c
3
),故两直线相交于一点,选A.
转载请注明原文地址:https://www.kaotiyun.com/show/zjM4777K
0
考研数学一
相关试题推荐
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
设=______.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.求A的特征值、特征向量.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
求曲线的渐近线方程.
计算曲面积分,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
对同一目标接连进行3次独立重复射击,假设至少命中目标一次的概率为7/8,则单次射击命中目标的概率P=_______.
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0}
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(I)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X—Y是否相关,是否独
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率P.
随机试题
Beautyisacuriousphenomenon,oneofpermeable,shiftingboundaries.Wemaythinkweunderstandit,【C1】______wesenseiteffor
感染性心内膜炎的并发症包括
(2002年第68题)淋巴瘤病人增生的细胞可以完全表达为成熟的辅助性T细胞的是
A.急性非特异性心包炎B.结核性心包炎C.肿瘤性心包炎D.化脓性心包炎(2011年第140题)多数起病缓,常见发热及胸痛,可闻及心包摩擦音,见于
颅脑矢状位T1加权对哪种疾病诊断无帮助
患者,男,50岁。因“车祸致右肩部疼痛、肿胀2天”入院。患者入院前2天驾驶摩托车遭遇车祸,车翻后患者跌倒受伤。伤后右肩部肿胀、疼痛剧烈。右肩活动受限。右肘、腕关节可活动,右手可持物。若术中发现骨折呈节段性,且粉碎严重,复位后形成较大空隙,为了达到理想的
(2006年)在图形对通过某点的所有轴的惯性矩中,图形对主惯性轴的惯性矩一定()。
供应商选择的长期标准不包括()。
实行定期定额征税方式的个体工商户需要停业的,应当在停业前向税务机关申请办理停业登记。纳税人的停业期()。【2008年真题】
TheHTMListhelanguageusedtocreate(73)foruseontheWWW.
最新回复
(
0
)