首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2013-02-27
59
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
4
,α
5
.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为r(I)=r(II)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可由α
1
,α
2
,α
3
线性表出,设为α
4
=lα
1
+lα
2
+lα
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0, 即(k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(kα
3
-l
3
k
4
4)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4,即α
1
,α
2
,α
3
,α
5
线性无关.故必有 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zcF4777K
0
考研数学三
相关试题推荐
在长期的生产活动中,我国北方农民总结出“白露早,寒露迟,秋分种麦正当时”的农谚。但随着全球气候变暖,北半球气候带北移,如今我国北方冬小麦的播种时间已经变成了“寒露种麦正当时”。这说明()
我国对资本主义工商业的改造采取赎买的方针,所谓赎买就是()
工人阶级实现革命领导权的基础是()
记者在采访诺贝尔生理学或医学奖得主、中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工作的一
古希腊哲学家芝诺的学生曾问:老师,您知识如此渊博,怎么还觉得自己很无知呢?芝诺顺手画了一大一小两个圆说,小圆是你们的知识,大圆是我的知识,这两个圆的外面就是无知的部分,所以我接触无知的范围就比你们广。芝诺的说法蕴含的哲理是()。
国务院总理李克强2022年6月15日主持召开国务院常务会议。会议指出,保住()户市场主体,就能稳住就业、保持中国经济的韧性。为进一步助企纾困和稳岗,对符合条件的地区,允许中小微企业缓缴()个月的职工医保单位缴费,规模
新修订的《中华人民共和国工会法》自2022年1月1日起施行。根据规定,企业、事业单位、机关有会员()以上的,应当建立基层工会委员会。
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
随机试题
当事人提供书证原件确有困难的,可以提供与原件核对无误的()
瑞典社会保障制度的模式是()
呕吐的前期表现是
腭部手术的体位是腮腺手术的体位是
有一宗待建商品住宅的用地需进行地价评估,你认为可以优先选用哪四种估价方法?并简述理由。
某商贸企业为增值税一般纳税人,2009年5月初留抵税额8万元。当月发生如下业务:(1)购进粮食两批:从一般纳税人企业购入,支付金额50万元,从小规模农业生产企业购入40万元,均取得增值税普通发票。购入其他商品支付不含税价款500万元,取得增值税专用
积极的预防工作包括()
在古代科学文化巅峰的雅典,哲学家苏格拉底被视为“最有智慧的人”。这位哲学家却总是强调:“我只知道我一无所知。”他向人们解释说:如果说他的智慧有什么与众不同的话,那就是他知道自己的无知;其他人虽然也与他一样的无知,却不知道自己的无知。下列说法准确概括文意的是
行贿罪与对公司、企业人员行贿罪的界限。
2019年是五四运动100周年,五四精神对新时期弘扬爱国主义具有重大的意义。新时代的爱国主义的基本要求是
最新回复
(
0
)