首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知m个向量α1,…,αm线性相关,但其中任意m-1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其
已知m个向量α1,…,αm线性相关,但其中任意m-1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其
admin
2017-01-14
52
问题
已知m个向量α
1
,…,α
m
线性相关,但其中任意m-1个向量都线性无关,证明:
(Ⅰ)如果等式k
1
α
1
+…+k
m
α
m
=0成立,则系数k
1
,…,k
m
或者全为零,或者全不为零;
(Ⅱ)如果等式k
1
α
1
+…+k
m
α
m
=0和等式l
1
α
1
+…+l
m
α
m
=0都成立,则
其中l
1
≠0。
选项
答案
(Ⅰ)假设存在某个k
I
=0,则由k
1
α
1
+…+K
m
α
m
=0可得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
m
α
m
=0。 (1) 因为任意m-1个向量都线性无关,所以必有k
1
=…=k
i-1
=k
i+1
=…=k
m
=0,即系数k
1
,…,k
m
全为零。 所以系数k
1
,…,k
m
或者全为零,或者全不为零。 (Ⅱ)由(Ⅰ)可知,当l
1
≠0时,系数l
1
,…,l
m
全不为零,所以 [*] 将其代入(1)式得 [*] 又因为任意m-1个向量都线性无关,所以[*],即 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zCu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
[*]
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
设随机变量X-N(0,1),Y~N(1,4)且相关系数ρXY=1,则().
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为__________.
设{un},{cn}为正项数列,证明:
随机试题
铁棒打击头部导致子弹留在颅内导致
A.AFPB.CEAC.PSAD.CAl25E.CAl5-3原发性肝细胞癌的标志
关于食管蠕动的叙述,错误的是
王英于2005年10月进入某工厂工作,但工厂一直不肯与王英签订劳动合同。2006年8月,因工厂拖欠工资,王英欲向当地的劳动争议仲裁委员会提出仲裁。对此,下列说法错误的是哪些?
目前,我国证券投资基金反映的是一种()关系。
以下课程理论流派取消了课程问题特殊性的是()
清代的书院类型有四种,其中以博习经史辞章为主的书院是
Istheresomethingastruth?Foragoodmanycenturies"thesearchfortruth"hasbeen【31】thenoblestactivityofthehumanmind
下列表达式中,与DateDiff("m",#1893-12-26#,Date())等价的表达式是
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。小李是东方公司的会计,利用自己所学的办公软件进行记账管理,为节省时间,同时又确保记账的准确性,她使用Excel编制了2
最新回复
(
0
)