首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
It was hard to picture the semi-opaque milk in Shrek I.
It was hard to picture the semi-opaque milk in Shrek I.
admin
2022-04-28
54
问题
It was hard to picture the semi-opaque milk in Shrek I.
In Shrek, some say the most difficult shot to produce was that of a small glass of milk. By the time Shrek 2 came out in 2004, vastly improved software for rendering milk meant that the guards in the sequel went crazy for the stuff, even going so far as dumping boiling milk on a walking gingerbread man.
Milk was previously difficult to model realistically because it is translucent. In the first Shrek, it was modeled as an opaque fluid, which meant the light bounced straight off its surface, making it look like paint.
To build a realistic model of milk, in 2001, Henrik Wann Jensen at the University of California, San Diego, and colleagues added reflections from light scattering beneath the milk’ s surface. They used a technique that was later used to make Gollum’ s skin look eerily realistic in The Lord of the Rings trilogy. Now, insights gained during this progress are being put to work in the dairy industry, in the name of quality control.
To model just how light moves under the surface of a substance, Jensen specifies the substance, ability to scatter, absorb, refract and spread light. He deduces what values each property should have for a given substance by shining a spot of light onto a sample and measuring how the light intensity fades from the centre of the spot. Software then uses those properties to create a realistic model of the light moving and scattering beneath the surface.
Now Flemming Moller, a researcher at Danish food-ingredient company Danisco, is borrowing Jensen’ s technique to help determine particle sizes in drinking yogurt and to measure the size of air bubbles and ice crystals in ice cream—important for quality control and standardization. Like Jensen, he shines a spot of laser light on the yogurt or ice cream. As he has already correlated how the resulting pattern varies with particle and air bubble size, he can determine them from the shape of the spot. This allows Moller to test the products’ quality without having to sample the food invasively, something that always carries a risk of contamination. It also removes the need to dilute the samples, which is necessary for standard light-based tests.
The technique is not used routinely at Danisco but Moller hopes it will become widespread. "This work has been an eye-opener," he says. "I thought that computer graphics were very simple—you sit down and it’ s a lot of nerds. I was very surprised that there was a lot of science behind it. "
Compliments aside, Jensen has since updated the milk model so that it can be programmed to vary the sub-surface scattering and reflection according to the relative fat and protein composition of the milk. The primary light-scattering particles in skimmed milk are clumps of protein, but whole milk also contains fat globules. Jensen’ s model uses this to work out how to vary the way milk looks according to the fat and protein composition. He found that skimmed milk looks bluish, because protein molecules scatter blue light preferentially and whole milk looks white, because fat globules scatter all frequencies equally.
He can also reverse the process to determine the fat and protein content of a sample of milk—and therefore the type of milk just by shining light on it. He does this by running multiple milk simulations, tweaking the fat and protein content with each run until the optical properties of the simulated milk—and therefore the fat and protein content—match that of the real thing. Moller hopes to use the same technique to more precisely determine particle size in a sample.
Jensen believes that such models will have other applications. By measuring how pollutants affect the optical properties of seawater, a model similar to the milk model could be used to monitor and interpret changes in the oceans, he says. And a model of the atmosphere might allow changes in its composition to be tracked.
选项
A、TEUE
B、FALSE
答案
F
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yzPd777K
本试题收录于:
公共英语五级笔试题库公共英语(PETS)分类
0
公共英语五级笔试
公共英语(PETS)
相关试题推荐
Welearnfromthepassagethatnavigationcomputers______.Withanavigationcomputer,adriverwilleasilyfindthebestrout
Whichofthefollowingservicesisnotofferedbythefederalgovernment?TheFoodandDrugAdministrationwasestablishedfor
People’sattitudetowarddrugshasbecometoresembleanemotionalrollercoaster,careeningwildlyfromdizzyheightsofpharma
Psychologistssaytherearetwodifferentkindsofloneliness.
What’stheaverageincreaseperyearofforeignstudentpopulationintheperiodbetween1985and1990intermsofpercentage?
InwhichyeardidhebecomevicepresidentoftheNationalTrustforJersey?
AstunnedHollywooddebatedthefutureofoneofitsbiggeststarsSunday.Asasheriff’swatchdoglaunchedaninvestigationint
RecentsurveysshowthatJapaneseyouthhavebecomea"MeGeneration"thatrejectstraditionalvalues."Around1980manyJap
Paintingyourhouseislikeaddingsomethingtoahugecommunalpictureinwhichtherestofthepaintingisdoneeitherbynatu
Itwashardtopicturethesemi-opaquemilkinShrekI.
随机试题
小组讨论的人数及时间是
不典型结节病可有下列哪些表现
为患者取半坐卧位时,需注意床头支架与床的角度应成
具有镇静、催眠、抗惊厥、抗癫痫作用的药物为
测量人员应首先检测原控制点及界址点的(),确认无误后再进行变更地籍测量。
房地产经纪人在受托权限内,以委托人名义与第三方进行交易并由委托人直接承担相应的法律责任的商业行为称为()。
归纳国内外已有的PQCIS系统,PQCIS的功能一般包括()。
鲁国的平民都信任孔子的所有门徒,但是没有一个诡辩者被鲁国的任何一个平民所信任,鲁国的有些平民崇文尚武。由此可以推出()。
黑洞效应就是一种自我强化效应,当一个企业达到一定的规模之后,也会像一个黑洞一样产生非常强的吞噬和自我复制能力,把它势力所及的大量资源吸引过去,而这些资源使得企业更加强大,形成一个正向加速循环的旋涡。根据上述定义,下列属于黑洞效应的是()。
纵向翻译
最新回复
(
0
)