首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
admin
2017-04-20
65
问题
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S
1
是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S
2
的3倍.
选项
答案
令F(x)=∫
a
x
[f(x)一f(t)]dt-3∫
x
b
[f(t)一f(x)]dt. 其中x∈[a,b],显然F(x)在[a,b]上连续.又由f’(x)>0知 f(a)<f(x)<f(b) x∈(a,b) 于是 F(a)=一3∫
a
b
[f(t)一f(a)]dt<0 F(b)=∫
a
b
[f(b)一f(t)]dt>0 由连续函数的介值
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ygu4777K
0
考研数学一
相关试题推荐
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
当x>0时,曲线().
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
如下图,连续函数y=f(x)在区间[-3,-2]、[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是().
曲面(z-a)φ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=__________(其中φ为连续正值函数,a>0,b>0).
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
随机试题
A.浆液性炎B.纤维素性炎C.化脓性炎D.出血性炎E.间质性炎(2005年第116题)病毒性肺炎的主要病理学特征是
经皮质性失语的特点
丁某将其所有的房屋出租给方某,方某将该房屋转租给唐某。下列哪些表述是正确的?(2011年卷三第57题)
某企业需要对某生产设备进行技术改造,这项工作专业性强、涉及范围小、工期短,其采用的项目管理组织是()组织。
特殊情况下,专业报关企业和代理报关企业可经所在地海关同意,且经海关总署审批后,方可进行异地报关业务,但其中申请手续与自理报关企业的申请手续略有不同。()
2014年全国高考作文题目18卷中有12卷作文选题方向被某网站大数据预测命中。同时,6月17日前开场的13场世界杯胖率预测中,该网站命中10场。该网站采用的预测技术核心是()。
小组工作是社会工作的工作方法之一。小组工作的特点不包括()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
ThispassageismainlyTheDNAdesignedbyEvan’stechnologydiffersstrikinglyfromthatsynthesizedbyexistingtechnologyin
Noiseconstitutesarealandpresentdangertopeople’shealth.Dayandnight,athome,atwork,andatplay,noisecanproduce
最新回复
(
0
)