首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2018-08-01
98
问题
(02)已知矩阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
令x=[*],则由Ax=[α
1
,α
2
,α
3
,α
4
][*]=β 得x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0 由α
2
,α
3
,α
4
线性无关,得 [*] 解此方程组,得 x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/y2j4777K
0
考研数学二
相关试题推荐
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设A,B皆为n阶矩阵,则下列结论正确的是().
设A=有三个线性无关的特征向量,则a=_______.
随机试题
在电动机的正反转控制电路中,为了防止主触头熔焊而发生短路事故,应采用()。
设f(x)在点x0处连续,则下面命题正确的是【】
A.病毒B.结核C.立克次体D.细菌E.衣原体急性非特异性心包炎可能的主要病因是
[2007年,第68题]直径为d的圆形对其形心轴的惯性半径i等于()。
承包人应按合同约定的工作内容和施工进度要求,编制施工组织设计和施工进度计划,并对所有施工作业和施工方法的()负责。
应用动态控制原理进行建设工程项目目标控制时,产生的纠偏可采取多种纠偏措施,下列纠偏措施中不属于管理措施的是()。
银行开展金融创新活动,应充分尊重他人的知识产权,不得侵犯他人的知识产权和商业秘密。银行应制定有效的知识产权保护战略,保护自主创新的金融产品和服务。上述体现的是()。
2010年,我国共投入研究与试验发展(R&D,以下简称R&D)经费7062.6亿元,比上年增长21.7%;R&D经费投入强度(与国内生产总值之比)为1.76%,比上年的1.70%有所提高。分活动类型看,全国用于基础研究的经费投入为324.5亿元,
有如下程序:#includeusingnamespacestd;classGA{public:virtualintf(){return1;}};classGB:public
Whatisthepurposeoftheletter?Tobook______forholiday.Howmuchisthedepositforthemtobookalltherooms?
最新回复
(
0
)