首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X在区间(0,1)上服从均匀分布,当X取到戈(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
设随机变量X在区间(0,1)上服从均匀分布,当X取到戈(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
admin
2016-10-20
65
问题
设随机变量X在区间(0,1)上服从均匀分布,当X取到戈(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
选项
答案
(Ⅰ)根据题设X在(0,1)上服从均匀分布,其概率密度函数为 [*] 而变量Y,在X=x的条件下,在区间(x,1)上服从均匀分布,所以其条件概率密度为 [*] 再根据条件概率密度的定义,可得联合概率密度 [*] (Ⅱ)利用求得的联合概率密度,不难求出关于Y的边缘概率密度 [*] (Ⅲ)由图3.5可以看出 [*]
解析
欲求密度函数,通常是先求分布函数,这对一维和二维随机变量都是一样的.但是本题所给的是X在(0,1)区间上服从均匀分布,而且条件“当X取到戈(0<x<1)时,Y等可能地在(x,1)上取值”意味着,在X=x的条件下,Y在(x,1)上服从均匀分布,这相当于给出的是条件概率密度,所以可以直接写出联合概率密度.
转载请注明原文地址:https://www.kaotiyun.com/show/xMT4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
随机试题
下列不是甲状腺危象的治疗方案的是
男,16岁,发热4天伴纳差2天急诊。检查:血压114/70mmHg。左脚趾甲沟部红肿破溃。血白细胞计数为20×109/L。中性粒细胞为89%。左脚趾经切开引流处理后应给予
在下列哪些选项中,时间、地点或者方法是犯罪构成客观方面的构成因素?()
某基坑深16.0m,采用排桩支护,三排预应力锚索,桩间采用旋喷桩止水。基坑按设计要求开挖到底,施工过程未发现异常并且桩水平位移也没有超过设计要求,但发现坑边局部地面下沉,初步判断其主要原因是以下哪个选项?()
发生火灾事故时,导游人员应()
《桃花源记》中描述:“缘溪行,忘路之远近。忽逢桃花林,……林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田美池桑竹之属。”“桃花源”的地形最可能是()。
设有关系模式R(A1,A2,A3,A4,A5,A6),其中:函数依赖集F={A1→A2,A1A3→A4,A5A6→A1,A2A5→A6,A3A5→A6),则___________(21)是关系模式R的一个主键,R规范化程度最高达到____________(
SQL-INSERT命令的功能是
The21stcenturyusheredinwhatwassupposedtobepaperlessliving.Thedataofourliveswastoberecordedindigitalclouds
A、Theylearnsoundsmorequicklythanotherbirds.B、Theycanimitatethemostdifferentsounds.C、Theythinkmuchwhilelearnin
最新回复
(
0
)