首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判别下列正项级数的敛散性: (Ⅰ),其中{xn}是单调递增而且有界的正数数列.
判别下列正项级数的敛散性: (Ⅰ),其中{xn}是单调递增而且有界的正数数列.
admin
2017-10-23
100
问题
判别下列正项级数的敛散性:
(Ⅰ)
,其中{x
n
}是单调递增而且有界的正数数列.
选项
答案
(Ⅰ)因为函数f(x)=[*]单调递减,所以 [*] 再采用比较判别法,并将[*]收敛.再由上面导出的不等式0<u
n
≤[*]知原级数收敛. (Ⅱ)首先因为{x
n
}是单调递增的有界正数数列,所以0≤1—[*]. 现考察原级数的部分和数列{S
n
},由于 S
n
=[*](x
n+1
一x
1
), 又{x
n
}有界,即|x
n
|≤M(M>0为常数),故 [*] 所以{S
n
}也是有界的.由正项级数收敛的充要条件知原级数收敛.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/x7H4777K
0
考研数学三
相关试题推荐
判断级数的敛散性.
设常数k>0,则级数().
设级数().
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设函数y=f(x)由方程xy+21nx=y4所确定,则曲线y=f(x)在(1,1)处的法线方程为__________.
求幂级数(|x|<1)的和函数s(x)及其极值.
求幂级数的收敛区间.
随机试题
以外币表示的,用以进行国际清偿的支付手段和资产是()。
把语言具体区分为“语言结构”和“言语”的语言学家是【】
关于高温快显胶片的特点,错误的是
医学伦理学的3个特征是( )
压片前干颗粒的处理有
下列不属于流动资金的是()。
切割后工件相对变形小的切割方法有()。
单位提供的担保、未决诉讼或有关事项,应当按照国家统一的会计制度的规定,在财务会计报告中予以说明。()
《英烈法》明确的英雄烈士的保护范围包括()。
一、注意事项 1.本题本由给定资料与作答要求两部分组成。考试时间为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。 2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在准考证号对
最新回复
(
0
)