首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例: 阅读下列两位教师有关“数列前n项和”的教学片段。 教师甲的教学过程:等差数列前n项和 问题1:世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共画
案例: 阅读下列两位教师有关“数列前n项和”的教学片段。 教师甲的教学过程:等差数列前n项和 问题1:世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共画
admin
2015-08-13
135
问题
案例:
阅读下列两位教师有关“数列前n项和”的教学片段。
教师甲的教学过程:等差数列前n项和
问题1:世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共画了多少宝石吗?
图案中,第1层到第51层一共有多少颗宝石?组织学生分组讨论,在合作中学习,并把小组发现的方法一一呈现。
生1:原式:(1+2+3+……+50)+51
生2:原式=0+1+2+……+50+51
生3:原式=(1+2+…+25+27…+51)+26
问题2:求图案中从第1层到第n层(1<n<100,n∈N
*
)共有多少颗宝石?
学生通过激烈的讨论后,发现n为奇数时不能配对,可能需要分n为奇数、偶数的情况分别求解,教师引导学生,在三角形图案右侧倒放一个全等的三角形与原图补成平行四边形如图。
通过以上启发学生再自主探究,相信容易得出解法:
问题3:在公差为d的等差数列{a
n
}中,定义前n项和S
n
=a
1
+a
2
+…+a
n
,如何求S
n
?
由前面的大量铺垫,学生容易得出如下过程:
∵S
n
=a
1
+(a
1
+d)+(a
1
+2d)+…+[a
1
+(n-1)d]
S
n
=a
n
+(a
n
-d)+(a
n
-2d)+…+[a
n
-(n-1)d]
组织学生讨论:
在公式l中若将a
n
=a
1
+(n-1)d代入又可得出哪个表达式?
即:
教师乙的教学过程:等比数列前n项和
师:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?同学们,你们知道西萨要的是多少粒小麦吗?
(教师引导学生写出麦粒总数1+2+2
2
+2
3
+……2
63
。)
师:1+2+2
2
+2
3
+……2
63
是什么数列求和?有何特征?应归结为什么数学问题呢?
探讨1:设S
64
=1+2+2
2
+2
3
+……2
63
,记(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍。)
探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有2S
64
=2+2
2
+2
3
+……2
63
+2
64
,记为(2)式。比较(1)(2)两式,你有什么发现?
生:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:S
64
=2
64
-1。
师:对,这就是错位相减法。
(其他过程略。)
教师在讲解过求和公式后,再顺势引导学生将结论一般化,设等比数列{a
n
},首项为a
1
,公比为q,如何求前n项和S
n
?让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。
学生推导完成后,师问:由(1-q)S
n
=a
1
—a
1
q
n
得
对不对?这里的q能不能等于1?等比数列中的公比能不能为1? q=1时是什么数列?此时S
n
=?
师追问:结合等比数列的通项公式a
n
=a
1
q
n-1
,如何把S
n
用a
1
、a
n
、q表示出来?(引导学生得出公式的另一形式)
师:探究等比数列前n项和公式,还有其他方法吗?我们知道,
S
n
=a
1
+a
1
q+a
1
q
2
+…+a
1
q
n-1
=a
1
+q(a
1
+a
1
q+…+a
1
q
n-2
)
那么我们能否利用这个关系求出S
n
呢?根据等比数列的定义又有
,能否联想到等比定理从而求出S
n
呢?
问题:
(1)分析甲乙两位教师的教学过程。
(2)通过上述知识的学习过程,说明在此教学过程中培养了学生的哪些能力。
选项
答案
(1)甲教师本节课以故事引课,增强学生的好奇心,激发学生的学习欲望和热情。以问题为纽带,通过三个问题组织学生讨论,由特殊(自然数的前51项和)到一般(自然数的前几项和),再到一类(等差数列前几项和),循序渐进。 乙教师在本节课开始,设置了“棋盘上的数学”一例,让学生感受数学文化的熏陶,引起学生的兴趣,挑起学生探索新知识的欲望,进而提出了等比数列求和的问题。本节课例子设计精巧,使学生既巩固了知识,又形成了技能;通过例题讲解,进一步渗透分类讨论的思想,培养了分类讨论的思想和思维的缜密性。 (2)对问题进行层层递进的探究,使学生从不同的思维角度掌握了数列的前几项和公式,从中深刻领会推导过程所蕴涵的逻辑推理方法和数学思维方法,培养了学生思维的深刻性、尖锐性和批判性。通过精选例题分层次练习,使学生既巩固了知识又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作学习的学习习惯,也培养了学生勇于探索、不断创新的思维品质。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/x2tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
阅读材料,回答问题。学导式教学法是近十余年国内兴起的一种启发式教学法之一,是利于教学质量提高的可行方法。所谓学导式教学法,就是在教师指导下,学生进行自学、自练的一种方法。它把学生在教学过程中的认知活动视为教学活动的主体,让学生用自己的智慧主动地去获取知识
布鲁纳认为,无论我们选择何种学科,都务必使学生理解该学科的基本结构,依此而建立的课程理论是()。
简述物质和意识的辩证关系。
某学校王老师在上完《亲子之间》的这节课后,向学生布置了一个课后作业:回家帮父母做一件事情。这种做法体现了思想品德课的特点是()。
经过30多年的不懈努力,深圳迅速从一个边陲小镇发展成为一个现代化大城市,综合经济实力跃居全国大中城市前列。这充分证明了()。
随着人民生活水平的提高,人们对商品房和家用汽车需求旺盛,拉动了房地产业、汽车制造业及相关产业的迅速发展。说明()。
甲、乙双方连续几年订有买卖“交流电机”的合同。有一次签订合同时,在“标的物”一栏只写了“电机”两字。当时正值交流电机热销,而甲方供不应求,故甲方就以直流电机交货。就民法的基本原则而言,甲方违反了()。
已知等差数列{an}满足:a3=7,a5+a7=26。{an}的前/1,项和为Sn。(1)求an及Sn;(2)令bn=(n∈N*),求数列{bn}的前n项和Tn。
设an=n2-9n-100(n=1,2,3…),则数列{an}中取值最小的项为()。
如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAF,G,H分别为FA,FD的中点。证明:四边形BCHG是平行四边形;
随机试题
简述威尔逊界定的行政学研究的目标。
患儿,男,10岁。双腮腺反复肿胀3年,每年肿胀4~5次,每次持续1周,无口干、眼干症状,腮腺造影有点球状扩张。合适的处理为
检查血型时,如果抗—A标准血清凝集,而抗-B标准血清不凝集,其血型为检查血型时,如果抗—A标准血清不凝集,而抗—B标准血清凝集,其血型为
A、辛伐他汀B、吉非贝齐C、烟酸D、依折麦布E、阿昔萸司属于羟甲基戊二酰辅酶A还原酶抑制剂的是
背景资料2014年7月,某工程公司与某市运营商签订了一项城区管道光缆施工合同,合同约定运营商提供主材,项目的安全生产费按施工费的1%计取。开工前,项目负责人召集本项目的班组长开会,会上由现场勘查人员进行了安全技术交底,并做了书面记录;会
管理人决定继续履行合同的,对方当事人应当履行;但是,对方当事人有权要求管理人提供担保。管理人是否提供担保,不影响合同的履行。()
从众行为的原因有()。
在人员录用原则中,()是以事业的需要、岗位的空缺为出发点,根据岗位对任职者的资格要求来选择人员。
坚持科学发展观,必须要坚持走()的文明发展道路。
CombatingFinancialCybercrimeThereisagrowingfinancialandeconomicthreat,athreattoallcountries,posedbyinterna
最新回复
(
0
)