首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
admin
2016-01-11
104
问题
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
选项
答案
设F(x)=f(x)一x,则F(x)在[0,1]上连续. 由于0<f(x)<1,所以 F(0)=f(0)>0,F(1)=f(1)一1<0, 由介值定理知,在(0,1)内至少存在一点ξ,使F(ξ)=0,即f(ξ)=ξ 假设有两个x
1
,x
2
∈(0,1),且x
1
≠x
2
,使F(x
1
)=F(x
2
)=0,则由罗尔定理,存在η∈(0,1),使F’(η)=f’(η)一1=0,这与f’(x)≠1矛盾,故f(x)=x有且仅有一个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wl34777K
0
考研数学二
相关试题推荐
设f(x)为可导函数,且满足条件则曲线y=f(x)在点(1,f(1))处的切线斜率为().
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为().
设f(x,y)=x+Y+1在D={(x,y)|x2+y2≤a2,a>0}上取得最大值+1,求a的值.
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求曲线y=y(x)的凹凸区间及拐点.
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求y(x);
设f(x)在[a,b]上连续,xi∈[a,b],ti>0(i=1,2,…,n)且,试证明至少存在一点ε∈[a,b],使得f(ε)=t1f(x1)+t2f(x2)+…+tnf(xn)。
随机试题
TCP协议为了解决端对端的流量控制,引入了()来解决。
消费增长与本国经济增长之间的关系,可以有以卜三种模式,即
重金属铅主经蓄积在
在下列哪些情形下,可以责令相关的企事业单位停止生产或者停业、关闭?()
当前我国某些地区城乡经济出现盲目发展、重复建设、生态环境遭受破坏等现象,其主要根源是()。
()是指建筑安装工程中对卫生、安全、环境保护和公众利益起决定性作用的检验项目。
中国人民银行《贷款风险分类指导原则》规定,从2002年起,在我国各类银行全面施行贷款质量四级分类管理,即正常、逾期、呆滞和呆账。()
下列哪个流派注重观察和改变家庭成员的沟通模式,促进家庭在平等、对称的互动模式中去交流?()
三相变压器同侧绕组的连接形式主要有()。
PromoteLearningandSkillsforYoungPeopleandAdultsA)Thisgoalplacestheemphasisonthelearningneedsofyoungpeoplean
最新回复
(
0
)