首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度为 f(χ,y)=,-∞<χ,y<+∞, 记Z=X2+Y2.求: (Ⅰ)Z的密度函数; (Ⅱ)EZ,DZ; (Ⅲ)P{Z≤1}.
设二维随机变量(X,Y)的联合概率密度为 f(χ,y)=,-∞<χ,y<+∞, 记Z=X2+Y2.求: (Ⅰ)Z的密度函数; (Ⅱ)EZ,DZ; (Ⅲ)P{Z≤1}.
admin
2018-11-23
39
问题
设二维随机变量(X,Y)的联合概率密度为
f(χ,y)=
,-∞<χ,y<+∞,
记Z=X
2
+Y
2
.求:
(Ⅰ)Z的密度函数;
(Ⅱ)EZ,DZ;
(Ⅲ)P{Z≤1}.
选项
答案
(Ⅰ)当z≤0时,F(z)=0;当z>0时, F(z)=P{Z≤z}=P{X
2
+Y
2
≤z} =[*] 于是f
Z
(z)=F′(z)=[*] 由此可以看出,Z服从参数为[*]的指数分布. (Ⅱ)由f(χ,y)=[*]可知,X与Y相互独立,且X
2
与Y
2
也独立,又X~N(0,σ
2
),Y~N(0,σ
2
),故 EZ=E(X
2
+Y
2
)=EX
2
+EY
2
=2DX=2σ
2
, DZ=D(X
2
+Y
2
)=DX
2
+DY
2
=2DX
2
, [*] DX
2
=EX
4
-(EX
2
)
2
=3σ
4
-σ
4
=2σ
4
, 故DZ=4σ
4
. (Ⅲ)P{Z≤1}=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/w6M4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)在G=上服从均匀分布,则条件概率=_______
微分方程xy’+2y=sinx满足条件y(π)=的通解为________。
设X~N(μ,σ2),其中σ2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ2=___________·
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
行列式的第4行元素的余子式之和的值为_________.
设已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P-1AP为对角形矩阵.
设随机变量X1,X2,X3,X4独立同分布,P(X1=0)=0.6,P(X1=1)=0.4.求X=的概率分布.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为X1和X2.试证:对任意满足a+b=1的常数a、b,都是μ的无偏估计.并确定a、b,使D(T)达到最小.
(96年)4阶行列式的值等于
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
随机试题
减压病引起的栓塞为
A、抑制细菌蛋白质合成B、抑制细菌细胞壁合成C、与PABA相竞争D、抑制二氢叶酸还原酶E、抑制DNA回旋酶磺胺类( )。
为了清偿债务,企业可以()。
设L是曲线y=lnx上从点(1,0)到点(e,1)的一段弧,则曲线积分+xdy=()。
为保证火灾情况下,能够满足火灾初期扑救和人员疏散的要求,施工现场应配备临时应急照明的场所有()。
风险经理一般要设法识别的潜在损失类型有()
下列属于债券型理财产品主要投资对象的有()。
2010年8月20日,中共中央政治局召开会议,会议指出,党内民主是党的生命,()是党内民主的重要内容。
软件质量包含多方面的内容,(7)、(8)、可移植性和可复用性等是较为重要的质量特性。在软件开发中,必须采取有力的措施,以确保软件的质量,这些措施至少应包括(9)、(10)和(11)。
A、 B、 C、 A本句为提议去制造工厂之前顺便去趟办公室的陈述句。
最新回复
(
0
)