首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得 ξf(ξ)=∫ξ1f(x)dx.
admin
2017-07-26
49
问题
设f(x)在[0,1]上连续,且f(x)非负,试证:至少存在一点ξ∈(0,1),使得
ξf(ξ)=∫
ξ
1
f(x)dx.
选项
答案
令F(x)=x∫
1
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=1.∫
1
1
f(t)dt=0.由洛尔定理,存在ξ∈(0,1),使F’(ξ)=0,即∫
1
ξ
(t)dt+ξf(ξ)=0,故ξf(ξ)—∫
ξ
1
f(x)dx=0.
解析
欲证ξf(ξ)=∫
ξ
1
f(x)dx→xf(x)=∫
x
1
f(t)dt,
如作辅助函数F(x)=xf(x)一∫
x
1
f(t)dt,则
F(0)=0f(0)一∫
0
1
f(t)出≤0, F(1)=1.f(1)一∫
1
1
f(t)dt=f(1)≥0,
难以验证F(x)在[0,1]上有F(0)<0,F(1)>0.于是,可作辅助函数F(x),使得
F’(x)=xf(x)一∫
x
1
f(t)dt,
即 F’(x)=[x∫
1
x
f(t)dt]’,
即 F(x)=x∫
1
x
f(t)dt,
再用洛尔定理证明.
转载请注明原文地址:https://www.kaotiyun.com/show/vuH4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设连续函数f(x)满足,则f(x)=_________.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在[a,b]内存在ξ,使得
随机试题
确定技术引进重点领域的主要依据是
=__________________.
不属于肝素药理作用的是:
据统计20世纪90年代恶性肿瘤的治愈率为45%,其中放射治疗治愈率为
科目汇总表核算形式的突出优点是( )。
企业欲用控制图对某零件的生产过程进行监控,需要进行的工作主要如下。使用—R控制图控制,R图稳定,子组样本容量5,图的控制限为:UCLX=16.4,LCLX=15.6,Cp=CpK=1.33,则总体的标准差为()。
主张“任何学科的基本原理都可以用某种形式,教给任何年龄的任何儿童”的是
《最高人民法院关于贯彻执行(中华人民共和国民法通则)若干问题的意见(试行)》第184条规定:外国法人以其注册登记地国家的法律为其本国法,法人的民事行为能力依其本国法确定。外国法人在我国领域内进行的民事活动,必须符合我国的法律规定。该条规定所体现的是哪一个原
在软件开发中,需求分析阶段产生的主要文档是( )。
ItwaspleasanttowakeupinFlorence,toopentheeyesuponabrightbareroom,withafloorofredtileswhichlookcleantho
最新回复
(
0
)