首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(x,y)是由9x2一54xy+90y2一6yz一z2+18=0确定的函数, (Ⅰ)求证z=z(x,y)一阶偏导数并求驻点; (Ⅱ)求z=z(x,y)的极值点和极值.
设z=z(x,y)是由9x2一54xy+90y2一6yz一z2+18=0确定的函数, (Ⅰ)求证z=z(x,y)一阶偏导数并求驻点; (Ⅱ)求z=z(x,y)的极值点和极值.
admin
2017-11-23
108
问题
设z=z(x,y)是由9x
2
一54xy+90y
2
一6yz一z
2
+18=0确定的函数,
(Ⅰ)求证z=z(x,y)一阶偏导数
并求驻点;
(Ⅱ)求z=z(x,y)的极值点和极值.
选项
答案
(Ⅰ)利用一阶全微分形式不变性,将方程求全微分即得 18xdx一54(ydx+xdy)+180ydy一6zdy一6ydz一2zdz=0, 即 (18x一54y)dx+(180y一54x一6z)dy一(6y+2z)dz=0. 从而 [*] 为求隐函数z=z(x,y)的驻点,应解方程组 [*] ②可化简为x=3y,由③可得z=30y一9x=3y,代入①可解得两个驻点x=3,y=1,z=3 与x=一3,y=一1,z=一3. (Ⅱ)z=z(x,y)的极值点必是它的驻点.为判定z=z(x,y)在两个驻点处是否取得极值,还需求z=z(x,y)在这两点的二阶偏导数. 注意,在驻点P=(3,1,3),Q=(一3,一1,一3)处 [*] 在驻点P,Q处 [*] 再由(3y+z)[*]=90y一27x一3z=>在驻点P,Q处 (3y+z)[*]=90.于是可得出在P点处3y+z=6, [*] 故在点(3,1)处z=z(x,y)取得极小值z(3,1)=3. 在Q点处3y+z=一6. [*] 因AC—B
2
[*] 故在点(一3,一1)处z=z(x,y)取得极大值z(一3,一1)=一3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/v8r4777K
0
考研数学一
相关试题推荐
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
设函数f(x),g(x)在[a,b]上连续且单调增,证明:
求柱体x2+y2≤2x被x2+y2+z2=4所截得部分的体积.
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为__________.
求下列曲面的方程:以为准线,顶点在原点的锥面方程.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为()
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
求椭圆与椭圆所围成的公共部分的面积.
设P(x,y),Q(x,y)在全平面有连续偏导数,且对以任意点(x0,y0)为中心,以任意正数r为半径的上半圆L:x=x0+rcosθ,y=y0+rsinθ(0≤θ≤π),恒有∫LP(x,y)dx+Q(x,y)dy=0.求证:
随机试题
放大器中导线布线,下列说法不正确的是()
社会主义核心价值体系
关于MS—EPI与FSE序列的叙述,正确的是
阴邪盛而导致的实寒证,其治疗方法是
患者,女性,70岁。住院心电图监测时发生室性心动过速,心率172次/分,血压120/80mmHg,意识清楚。双肺呼吸音清晰,无湿啰音。首选的治疗药物是
Thepersonheinterviewedwas______hisformerschoolmate.
抗战胜利后,国共两党没有就国内和平、民主、团结达成协议的根源是()。
y=-xe-x+Cx
在E—R图中,用来表示实体联系的图形是()。
Heconvinceshiscampaignmanagerthatifhe________successfulinhiselectionbidforasenateseat,heisinneedofamake-o
最新回复
(
0
)