首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 有非零解,试确定参数a的值,并求该非零解.
设方程组 有非零解,试确定参数a的值,并求该非零解.
admin
2018-12-21
64
问题
设方程组
有非零解,试确定参数a的值,并求该非零解.
选项
答案
方程组(***)有非零解,即方程组(*)与方程组(**)有非零公共解,设为β,则β属于方程组(*)的通解,也属于方程组(**)的通解,即 β=k
1
ξ
1
﹢k
2
ξ
2
=λ
1
η
1
﹢λ
2
η
2
, 其中k
1
,k
2
不全为零,且λ
1
,λ
2
不全为零.得 k
1
ξ
1
﹢k
2
ξ
2
-λ
1
η
1
-λ
2
η
2
=0, (*
’
) (*
’
)式有非零解[*]r(ξ
1
,ξ
2
,-η
2
,-η
2
)﹤4. 对(ξ
1
,ξ
2
,-η
1
,-η
2
)作初等行变换,有 [*] r(ξ
1
,ξ
2
,-η
1
,-η
2
)<4[*]a=-8. 故当a=-8时,方程组(***)有非零解. 当a=-8时,方程组(*
’
)的系数矩阵经初等行变换化为 (ξ
1
,ξ
2
,-η
1
,-η
2
) →[*] 方程组(*
’
)的非零解为 (k
1
,k
2
,λ
1
,λ
2
)
T
=k(1,1,1,1)
T
, 其中k是任意非零常数.故方程组(*),(**)的非零公共解为 β=k
1
ξ
1
﹢k
2
ξ
2
=[*]或β=λ
1
η
1
﹢λ
2
η
1
=[*] 其中k是任意非零常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/v8j4777K
0
考研数学二
相关试题推荐
(2002年)已知函数f(χ)在(0,+∞)上可导,f(χ)>0,f(χ)=1,且满足求f(χ).
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
(1987年)求(a,b是不全为零的非负常数).
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
(1991年)曲线y=的上凸区间是=_______.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知=3(1+t)。
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
随机试题
属于不完全骨折的是
下列哪些人具备原告资格,可以依法提起行政诉讼?()
阅读下列材料,完成教学设计。材料1:《普通高中化学课程标准(实验)》的“内容标准”:“根据生产生活中的应用实例或通过实验探究,了解钠、铝、铁、铜等金属及其重要化合物的主要性质,能列举合金材料的重要应用。”材料2:普通高中课程标准实验教科书《化学.必修
Inlargepartasaconsequenceofthefeministmovement,historianshavefocusedagreatdealofattentioninrecentyearsondet
一般来说,为培养提高新教师和教学经验欠缺的年轻教师宜进行________观摩。
制发公文的目的和要求,一般是由()确定的。
一飞机上的座位分成两部分:头等舱50个座位;普通舱150个座位。如果20%的头等舱和30%的普通舱的座位是空的,那么整个飞机的座位空置率是()。
19世纪批判现实主义文学最卓越的功绩之一就是揭露了资本主义社会人与人之间赤裸裸的金钱关系,而夏洛蒂·勃朗特则在这深入人心的主题上________,大胆开辟了新的价值观领域,以简·爱对爱情的追求,描绘了不以金钱标价的婚姻,使读者耳目一新。但是作者毕竟无法__
下列文件物理结构中,适合随机访问且易于文件扩展的是____。
Thestoredisplayeditsmost______productsinthefrontwindow.(厦门大学2014年试题)
最新回复
(
0
)