首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设总体X服从正态分布X~N(μ,σ2)其中σ2已知.X1,X2,…,Xn是来自总体X的简单随机样本,对总体均值μ进行检验,假设H0:μ=μ0,H1:μ≠μ0.则( ).
[2018年] 设总体X服从正态分布X~N(μ,σ2)其中σ2已知.X1,X2,…,Xn是来自总体X的简单随机样本,对总体均值μ进行检验,假设H0:μ=μ0,H1:μ≠μ0.则( ).
admin
2019-04-08
71
问题
[2018年] 设总体X服从正态分布X~N(μ,σ
2
)其中σ
2
已知.X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,对总体均值μ进行检验,假设H
0
:μ=μ
0
,H
1
:μ≠μ
0
.则( ).
选项
A、若显著性水平α=0.05时拒绝H
0
,则在检验水平α=0.01时也拒绝H
0
B、若显著性水平α=0.05时接受H
0
,则在检验水平α=0.01时拒绝H
0
C、若显著性水平α=0.05时拒绝H
0
,则在检验水平α=0.01时接受H
0
D、若显著性水平α=0.05时接受H
0
,则在检验水平α=0.01时也接受H
0
答案
D
解析
如图所示,Z
α/2
表示标准正态分布的上
分位数,即图中阴影部分的面积为
.区间(一Z
α/2
,Z
α/2
)是在显著性水平α下的接受域.
若显著性水平α=0.05时接受H
0
,即表示检验统计量
的观察值落在接受域(一Z
0.025
,Z
0.025
)内.区间(一Z
0.005
,Z
0.005
)包含(一Z
0.025
,Z
0.025
),因此其观察值也落在区间(一Z
0.005
,Z
0.005
)内,即落在接受域内,所以选项D正确,B错误.
α=0.05时拒绝H
0
,即Z的观察值落在拒绝域(一∞,一Z
0.025
]∪[Z
0.025
,+∞)内;但区间(一∞,一Z
0.005
]∪[Z
0.005
,+∞)包含于(一∞,一Z
0.025
]∪[Z
0.025
,+∞),因此无法判断观察值是否落在区间(一∞,一Z
0.005
]∪[Z
0.005
,+∞)内,选项A、C无法确定.故选D.[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/ux04777K
0
考研数学一
相关试题推荐
设f1(x)为标准正态分布的概率密度,f2(x)为[一1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足()
设X1,X2,…Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi—,i=1,2,…,n.求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Y1与Yn的协方差Cov(Y1,Yn).
证明下列不等式:(Ⅰ)dx<π;(Ⅱ)
设f(x)具有连续的二阶导数,且
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0.(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.求先抽到的一份报名表是女生表的概率p;
甲、乙两人从1,2,…,15中各取一个数,设甲取到的数是5的倍数,求甲数大于乙数的概率.
设向量组线性相关,但任意两个向量线性无关,求参数t.
(2011年)(I)证明:对任意的正整数n,都有成立.(Ⅱ)设证明数列{an}收敛.
随机试题
患者,男,48岁。入院诊断为肝硬化失代偿期。入院次日出现呕血、黑粪现象,医嘱要求暂禁食,并记录24小时排出量。记录项目正确的是
如果你在编辑一个Word文稿时,需要输复杂的公式及表达式,而当前状态下又找不到公式编辑器,请说明应如何解决该问题。(假设该计算中安装的是Office2000软件)
最常见的阿米巴病的肠外并发症是
语音震颤减弱常见于
给水排水厂站工艺管理施工应遵循()的原则。
简述教学反思的作用。
Youaregoingtoreadalistofheadingsandatextabouthappiness.Choosethemostsuitableheadingfromthelistforeachnum
关系数据模型的3大要素为:关系数据结构、关系操作集合和关系【】。
TCP和UDP的一些端口保留给一些特定的应用使用。为HTFP协议保留的端口号为
Dependingonwhetheryoubelieveinprincipleortheartofthepossible,theUnitedNations’newproposalforthefutureofWes
最新回复
(
0
)