首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明: 对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明: 对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
admin
2018-05-21
26
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:
对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
选项
答案
设F(x)=e
-kx
φ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/upr4777K
0
考研数学一
相关试题推荐
计算(1)求J=;(2)设f(x)=max{x3,x2,1},求∫f(x)dx
设z=z(x,y)是由x2一6xy+10y2一2yz一z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy.(1)设M(x0,y0)为区域D上一点,问h(x,y)在该点沿平面上何方向的方向导
计算曲面积分在柱体x2+y2≤2x内的部分.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt.(1)证明F’(x)单调增加.(2)当x取何值时,F(x)取最小值.(3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设(X,Y)服从二维正态分布,其概率密度为一∞<x<+∞,一∞<y<+∞,概率P(X<Y)=________.
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
随机试题
设y=f(x)是方程y"-2y’+4y=0的一个解,若f(x0)>0,且f(x0)=0,则函数在x0有极_______值.
急性梗阻性化脓性胆管炎,最常见的病因是
牙源惟角化囊性瘤的内容物是哪种性质的
在()的指导下,水利工程建设项目法人应当组织制定本工程项目建设质量与安全事故应急预案。
()年,中国人民银行颁布了《个人住房担保贷款管理试行办法》。
企业将未到期的应收票据到银行贴现,其贴现息计入()。
当今教师在教学中提倡反思教学,这是古代先贤()行为在当代的延伸。
据权威市场调查机构GartnerGroup对造成非计划宕机的故障原因分析发现,造成非计划宕机的故障分成三类,下面_______不属于它定义的此三类。
Owlsareairborneinvaders-powerfulinflight,intimidatinginreposeandperchinginnumbersfarbeyondanythinganyoneremembe
Inacompetitiveeconomy,theconsumerusuallyhasthechoiceofseveraldifferentbrandsofthesameproduct.Yetunderneathth
最新回复
(
0
)