首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+aχ2,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+aχ2,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
admin
2018-04-18
76
问题
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+
aχ
2
,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
选项
答案
求旋转体的体积. [*] 求V(a)的最小值点.由于 [*] 则当a=-5时f(χ)>0(χ∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ujk4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
若0<x1<x2<2,证明
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
设A为3阶矩阵,P为3阶可逆矩阵,且,若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B.B=则(A-E)-1=_______.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
随机试题
Advertisingfollowsuseverywhere.Wheneverweturnonthetelevision,listentotheradiooropenanewspaperoramagazine,we
A、干燥处贮存B、缸、罐中贮存C、密闭容器贮存D、石灰缸贮存E、凉爽处贮存种子类饮片
轴范围内的主梁数量为(含轴线处,多跨连续梁计为1根,不包括室外楼梯):
上海期货交易所的()期货合约允许采用厂库标准仓单交割。
按照我国刑法的规定,紧急避险不负刑事责任。但其构成条件有明确的规定,关于紧急避险的构成条件,下列表述不正确的是()。
对于原告在行政诉讼中的举证,下列说法正确的是?()
根据我国《行政机关公务员处分条例》的规定,行政机关公务员散布有损国家声誉的言论,组织或者参加旨在反对国家的集会、游行、示威等活动的,情节较重的给予()。
在北京天安门广场,每天升国旗的时刻与日同出。下列节日中,国旗升起时刻最早的是( )。
莫卧儿帝国的开创者是()。
•Readthefollowingletter.•Choosethebestwordtofilleachgap.•Foreachquestion(19-33),markoneletter(A,B,CorD)o
最新回复
(
0
)