首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
The scientific name is the Holocene Age, but climatologists like to call our current climatic phase the Long Summer. The history
The scientific name is the Holocene Age, but climatologists like to call our current climatic phase the Long Summer. The history
admin
2011-01-08
102
问题
The scientific name is the Holocene Age, but climatologists like to call our current climatic phase the Long Summer. The history of Earth’s climate has rarely been smooth. From the moment life began on the planet billions of years ago, the climate has swung drastically and often abruptly from one state to another—from tropical swamp to frozen ice age. Over the past 10,000 years, however, the climate has remained remarkably stable by historical standards: not too warm and not too cold, or Goldilocks weather. That stability has allowed Homo sapiens, numbering perhaps just a few million at the dawn of the Holocene, to thrive; farming has taken hold and civilizations have arisen. Without the Long Summer, that never would have been possible.
But as human population has exploded over the past few thousand years, the delicate ecological balance that kept the Long Summer going has become threatened. The rise of industrialized agriculture has thrown off Earth’s natural nitrogen and phosphorus cycles, leading to pollution on land and water, while our fossil-fuel addiction has moved billions of tons of carbon from the land into the atmosphere, heating the climate ever more.
Now a new article in the Sept. 24 issue of Nature says the safe climatic limits in which humanity has blossomed are more vulnerable than ever and that unless we recognize our planetary boundaries and stay within them, we risk total catastrophe. "Human activities have reached a level that could damage the systems that keep Earth in the desirable Holocene state," writes Johan Rockstrom, executive director of the Stockholm Environmental Institute and the author of the article. "The result could be irreversible and, in some cases, abrupt environmental change, leading to a state less conducive to human development."
Regarding climate change, for instance, Rockstrom proposes an atmospheric-carbon-concentration limit of no more than 350 parts per million (p.p.m.)—meaning no more than 350 atoms of carbon for every million atoms of air. (Before the industrial age, levels were at 280 p.p.m.; currently they’re at 387 p.p.m, and rising.) That, scientists believe, should be enough to keep global temperatures from rising more than 2℃ above pre- industrial levels, which should be safely below a climatic tipping point that could lead to the Wide-scale melting of polar ice sheets, swamping coastal cities. "Transgressing these boundaries will increase the risk of irreversible climate change," writes Rockstrom. That’s the impact of breaching only one of nine planetary boundaries that Rockstrom identifies in the paper. Other boundaries involve freshwater overuse, the global agricultural cycle and ozone loss. In each case, he scans the state of science to find ecological limits that we can’t violate, lest we risk passing a tipping point that could throw the planet out of whack for human beings. It’s based on a theory that ecological change occurs not so much cumulatively, but suddenly, after invisible thresholds have been reached. Stay within the lines, and we might just be all right.
In three of the nine cases Rockstrom has pointed out, however—climate change, the nitrogen cycle and species loss—we’ve already passed his threshold limits. In the case of global warming, we haven’t yet felt the full effects, Rockstrom says, because carbon acts gradually on the climate—but once warming starts, it may prove hard to stop unless we reduce emissions sharply. Ditto for the nitrogen cycle, where industrialized agriculture already has humanity pouring more chemicals into the land and oceans than the planet can process, and for wildlife loss, where we risk biological collapse. "We can say with some confidence that Earth cannot sustain the current rate of loss without significant erosion of ecosystem resilience," says Rockstrom.
The paper offers a useful way of looking at the environment, especially for global policy makers. As the world grapples with climate change this week at the U.N. andG-20 summit, some clearly posted speed limits from scientists could help politicians craft global deals on carbon and other shared environmental threats. It’s tough for negotiators to hammer out a new climate-change treaty unless they know just how much carbon needs to be cut to keep people safe. Rockstrom’s work delineates the limits to human growth—economically, demographically, ecologically—that we transgress at our peril.
The problem is that identifying those limits is a fuzzy science—and even trickier to translate into policy. Rockstrom’s atmospheric-carbon target of 350 p.p.m. has scientific support, but the truth is that scientists still aren’t certain as to how sensitive the climate will be to warm over the long-term—it’s possible that the atmosphere will be able to handle more carbon or that catastrophe could be triggered at lower levels. And by setting a boundary, it might make policymakers believe that we can pollute up to that limit and still be safe. That’s not the case—pollution causes cumulative damage, even below the tipping point. By focusing too much on the upper limits, we still risk harming Earth. "Ongoing changes in global chemistry should alarm us about threats to the persistence of life on Earth, whether or not we cross a catastrophic threshold any time soon," writes William Schlesinger, president of the Cary Institute of Ecosystem Studies, in a commentary accompanying the Nature paper.
But as the world attempts to break the carbon addiction that already has it well on the way to climate catastrophe, more clearly defined limits will be useful. But climate diplomats should remember that while they can negotiate with one another, ultimately, they can’t negotiate with the planet. Unless we manage our presence on Earth better, we may soon be in the last days of our Long Summer.
The purpose in writing the passage is ______.
选项
A、to analyze the situation we are in.
B、to warn us of the danger Earth faces.
C、to identify nine planetary boundaries.
D、to delineate the limits to human growth.
答案
B
解析
此题是推理概括题。文章的目的旨在引起人们对地球所面临的危险的警惕。
转载请注明原文地址:https://www.kaotiyun.com/show/ujeO777K
0
专业英语八级
相关试题推荐
DreamResearchshowsthateveryonedreamsquitefrequentlyeverynight.Weusuallyrememberjustthelastdreamthatwehadb
DreamResearchshowsthateveryonedreamsquitefrequentlyeverynight.Weusuallyrememberjustthelastdreamthatwehadb
OralPresentationOneofthewaysthatteachersusetoinvolvetheirstudentsmoreactivelyinthelearningprocessis【1】___
UlyssesandDublinerswerewrittenby_______.
Asamatteroffact,whenallalanguagetakesfromanotheroneismerewords,itisusuallybecauseonlyasmallnumberofspea
"VisualMusic"isafine-tuned,highlydiverting,deceptivelyradicalexhibitionabouttherelationshipofmusicandmodernart,
Ourtheoriesabouthumandiseasearetheproductofcurrentfashion【M1】______thanwewouldliketoadmit.Butjustasthemo
Ourtheoriesabouthumandiseasearetheproductofcurrentfashion【M1】______thanwewouldliketoadmit.Butjustasthemo
Ourtheoriesabouthumandiseasearetheproductofcurrentfashion【M1】______thanwewouldliketoadmit.Butjustasthemo
Northernmarshesarebeingturnedintoempty,desecratedmudflatwasteland.Theculprit?Snowgeese.Thesemarshesaretheb
随机试题
《神农本草经疏》的作者是()(1999年第29题)
安德烈.马尔罗以中国的第一次国内革命战争为题材的作品是【】
女性患者,60岁,以“双颞侧持续性头痛3个月,左眼视力减退2d”来诊。测左眼视力0.1,右眼1.0。眼底检查:视网膜动脉变细,静脉充血,左侧视盘苍白。双侧颓动脉搏动明显变弱,有触痛,脉搏正常。余神经系统查体无异常。头部MRI未见异常。该患者最可能的诊
A、菌状乳头充血、红肿B、镜面舌C、沟纹舌D、毛舌E、菱形舌炎临床表现为舌背乳头全部萎缩的是的是
就左岸靠近主桥四跨的桩长情况,该段引桥桩基采用人工挖孔方法施工是否恰当?说明理由。C、D、E施工作业区域布置不合理?说明理由。
在我国,个人独资企业解散后,其债权人在()内未向该企业的投资人提出偿债请求的,投资人的偿还责任消灭。
年金是指等额、定期的系列收支,银行的零存整取中的整取额属于年金的收支形式。()
“阳光老师”我曾经在一所颇有规模的、新兴的民办学校实习,认识了一位“阳光老师”。他是澳大利亚人,大个子,五十来岁的样子,秃顶;他性格特别开朗,言谈举止活像一个小孩子。他的名字叫桑尼(SUN—NY,中文译为“阳光灿烂的”)。基于以上两点,
以人为本是科学发展观的核心立场,以人为本就是以最广大人民的根本利益为本。坚持以人为本()
IfIaskyouwhatconstitutes"bad"eating,thekindthatleadstoobesityandavarietyofconnecteddiseases,you’relikelyto
最新回复
(
0
)