首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1). (1)求X的数学期望EX(记EX为b); (2)求μ的置信度为0.95的置信区间; (3)利用上述结果求b的置
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1). (1)求X的数学期望EX(记EX为b); (2)求μ的置信度为0.95的置信区间; (3)利用上述结果求b的置
admin
2019-05-11
122
问题
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1).
(1)求X的数学期望EX(记EX为b);
(2)求μ的置信度为0.95的置信区间;
(3)利用上述结果求b的置信度为0.95的置信区间.
选项
答案
(1)b=EX=Ee
Y
=[*] 记y-μ=t,作积分变量代换,得 [*] (2)取自总体Y的样本值为:y
1
=ln0.5,y
2
=Inl.25,y
3
=ln0.8,y
4
=ln2,则μ的置信度为1-α的置信区间为: [*] 本题中σ
0
=1,n=4,α=0.05,[*]=u
0.975
=1.96 而[*](ln0.5+In1.25+ln0.8+ln2) =[*]ln(0.5×1.25×0.8×2)=[*]ln1=0 代入得μ的置信度为0.95的置信区间为 (0-1.96×[*],0+1.96×[*])=(-0.98,0.98)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tbJ4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收。由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%。则随机检验一箱产品,通过验收的概率p=________
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。(Ⅰ)求Y的概率密度fY(y);
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
随机变量X的密度函数为f(x)=ke-|x|(-∞<x<+∞),则E(X2)=______.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x).
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
(Ⅰ)求定积分an=∫02x(2x—x2)ndx,n=1,2,…;(Ⅱ)对于(Ⅰ)中的an,求幂级数anxn的收敛半径及收敛区间.
随机试题
患者,男性,56岁。1个月颈肩痛,并向右手放射,右手拇指痛觉减弱,肱二头肌肌力弱。患者的初步诊断是
《中华人民共和国劳动法》规定国家实行无薪年休假制度。
A.心B.肝C.脾D.肺“开鬼门”的利水治法跟哪里脏腑有关
账簿、记账凭证、报表、完税凭证、发票、出口凭证以及其他有关涉税资料应当保存( )年;但是,法律、行政法规另有规定的除外。
某单位采用货样买卖方式签订了设备采购合同,关于采购方式及合同的说法,正确的是()。
根据《建设工程安全生产管理条例》,意外伤害保险期限是()。
一对表现型正常的夫妇,生了一个患白化病的女儿,问这对夫妇再生一个孩子是正常男孩的概率是多少?控制白化病的基因遵循什么遗传规律?()
()对于科学相当于创新性对于()
列表框中被选中的数据项的位置可以通过一个属性获得,这个属性是( )。
都市寸土千金,地价炒得越来越高。今后将更高。拥有一个小小花园的希望,对寻常之辈不啻是一种奢望,一种梦想。我想,其实谁都有一个小小花园,这便是我们的内心世界。人的智力需要开发,人的内心世界也是需要开发的。人和动物的区别,除了众所周知的诸多方面,恐怕
最新回复
(
0
)