首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求作对角矩阵D,使得B一D. (2)实数k满足什么条件时B正定?
设 (1)求作对角矩阵D,使得B一D. (2)实数k满足什么条件时B正定?
admin
2017-10-21
67
问题
设
(1)求作对角矩阵D,使得B一D.
(2)实数k满足什么条件时B正定?
选项
答案
(1)A是实对称矩阵,它可相似对角化,从而B也可相似对角化,并且以B的特征值为对角线上元素的对角矩阵和B相似. 求B的特征值: |λE—A|=λ(λ一2)
2
,A的特征值为0,2,2,于是B的特征值为k
2
和(k+2)
2
,(k+2)
2
. [*] 则B一D. (2)当k为≠0和一2的实数时,B是实对称矩阵,并且特征值都大于0,从而此时B正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tOH4777K
0
考研数学三
相关试题推荐
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为__________.
设A,B皆为n阶矩阵,则下列结论正确的是().
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
就a,b的不同取值,讨论方程组解的情况.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
用概率论方法证明:
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
随机试题
“绝对运动中包含着相对静止,相对静止中包含着绝对运动”,这是一种()
下列属于腹主动脉发出的成对的脏支是()
关于胚泡结构的描述,错误的是
向心性视野缩小可见于
日常防止非洲猪瘟传入我国的最主要措施是
叩诊的注意事项之一是
当天气由于燥变为潮湿时,下列说法哪项是正确的()。
教育目的是教育活动的出发点和归宿,其层次的多样性使它具有多方面的功能,其中不包括()。
以下说法正确的是()。
求极限.
最新回复
(
0
)