首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
admin
2015-08-17
61
问题
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)e
y
+f(y)e
x
,且f’(0)存在等于a,a≠0,则f(x)=________.
选项
答案
axe
x
解析
由f’(0)存在,设法去证对一切x,f’(x)存在,并求出f(x).将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(x)=f(x)+f(0)e
x
,所以f(0)=0.
令△x→0,得 f’(x)=f(x)+e
x
f’(0)=f(x)+ae
x
,所以f’(x)存在.解此一阶微分方程,得f(x)=e
x
(∫ae
x
.e
-x
dx+C)=e
x
(ax+C)因f(0)=0,所以C=0,从而得f(x)=axe
x
,如上所填.
转载请注明原文地址:https://www.kaotiyun.com/show/t1w4777K
0
考研数学一
相关试题推荐
求微分方程y"-y’-6y=0的通解.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,C]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
利用取对数求导法求下列函数的导数(其中,a1,a2,…,an,n为常数):
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则()。
随机试题
Itisnotfeasibletowaitfourdaysuntilthebody______(use)tothenewtimezone.
程序设计语言中的注释会被编译,但不会被执行。()
结核杆菌侵犯中枢神经系统所致最常见的疾病是
禁止应用该药品的人群或疾病情况并尽量阐明其原因是药品的汉语拼音及英文名必须与药典一致的名称是
女性,18岁,扁桃体切除术后局部有少量出血,为配合止血可在颈部
图式从低级到高级发展是通过()两种形式进行的。
一、注意事项1.本试卷由给定资料与作答要求两部分构成。2.第一题、第二题、第五题,所有考生都必须作答。第三题仅限行政执法类、市(地)以下综合管理类职位的考生作答。第四题仅限考省级(含副省级)以上综合管理类职位的考生作答
[2016年]已知函数则().
THEDEVELOPMENTOFMANSHEE1.Thespeakerhadaproblemfinding______forhiscomputer.2.Initially,thespeakerboughtfrom
A、Americanfarmerstravelsfromavillagetohisfieldseachmorning.B、Americanfannershavemoremoney.C、EachAmericanfarmer
最新回复
(
0
)