首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果f(x)在[a,b]上连续,无零点,但有使f(x)取正值的点,则f(x)在[a,b]上的符号为________.
如果f(x)在[a,b]上连续,无零点,但有使f(x)取正值的点,则f(x)在[a,b]上的符号为________.
admin
2015-07-22
39
问题
如果f(x)在[a,b]上连续,无零点,但有使f(x)取正值的点,则f(x)在[a,b]上的符号为________.
选项
答案
正
解析
利用反证法,假设存在点x
1
∈[a,b],使得f(x
1
)<0.又由题意知存在点x
2
∈ [a,b],x
2
≠x
1
,使得f(x
2
)>0.由闭区间连续函数介值定理可知,至少存在一点ξ介于x
1
和x
2
之间,使得f(ξ)=0,显然ξ∈[a,b],这与已知条件矛盾.
转载请注明原文地址:https://www.kaotiyun.com/show/srU4777K
0
考研数学三
相关试题推荐
2022年国务院政府工作报告指出,加大对受疫情影响严重行业企业信贷投放,继续执行小微企业贷款延期还本付息和信用贷款支持政策,大型商业银行普惠小微企业贷款增幅超过(),企业综合融资成本()。
据新华社2022年5月17日报道,党的十八大以来,我国高等教育规模不断扩大,建成世界()规模高等教育体系,在学总人数达4430万人,高等教育毛入学率提高至2021年的(),高等教育进入普及化发展阶段。
资本是在运动中增殖的,资本周而复始、不断反复的循环,就叫资本的周转。在其他条件不变的情况下,下列关于资本周转的正确说法是
结合材料回答问题:加强和创新社会治理,非常重要的一点就是推动社会治理重心下移。打赢疫情防控阻击战,更需要将防控工作落实到单位社区、居住社区、小区、院落、居民楼、每一个有人群的空间,直到每一户、每个人。在这次疫情防控中,很多地方都把干部派到社区、小
结合材料回答问题:抗击突如其来的新冠肺炎疫情,必须在防控和救治两个战场协同作战。世界公认,中国行动堪称典范,不遗漏一个感染者,不放弃每一位病患,有效阻断了病毒传播链条,尽一切可能挽救生命。国务院新闻办公室日前发表《抗击新冠肺炎疫情的中国行动》白皮
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
随机试题
关于肠结核的描述,错误的是
患者,女性,36岁。出现咳嗽、咳痰,午后低热、盗汗,来院就诊,查结核菌素试验:强阳性,痰找结核分枝杆菌:阳性,该患者使用异烟肼治疗。该药物是
下列关于术后腹胀的处理不正确的是
股份有限公司溢价发行股票筹集的资金超过股票面值的溢价收入应(A)。
在选择目标市场时,银行应该考虑放弃有较大吸引力,但是不能推动银行完成主要发展目标的市场。()
周末,某咨询公司举办了一场规模盛大的人力资源论坛,所有曾经与该公司合作过的人力资源工作者都出席了本次论坛。中业电气的甲出席了本次论坛,因此,中业电气曾经与该咨询公司合作过。以下哪项最能有力地削弱上述论断?
1918年,马寅初在一次演讲时,有一位老农问他:“马教授,请问什么是经济学?”马寅初笑着说:“我给这位朋友讲个故事吧:有个赶考的书生到旅店投宿,拿出十两银子,挑了该旅店标价十两银子的最好房间,店主立刻用它到隔壁的米店付了欠单,米店老板转身去屠夫处还了肉钱,
歌德巴赫猜想。任何一个偶数都可以分解为两个素数之和。
SSL协议(安全套接层协议)是Netscape公司推出的一种安全通信协议,以下服务中,SSL协议不能提供的是(54)________。
关于IEEE802参考模型的描述中,正确的是()。
最新回复
(
0
)