首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
admin
2019-05-10
58
问题
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
充分利用A
m×n
B
n×s
=O的两个常用结论:秩(A)+秩(B)≤n及B的每一列向量均为AX=0的解向量,A的每一行向量均为X
T
B=0的解向量求之.
解一 因AB=O,则B的每列均为AX=0的解,而B≠O,则AX=0有非零解,从而A的列向量组线性相关.又A的行向量均为X
T
B=0的解,而A≠0,故X
T
B=0有非零解,从而B的行向量组线性相关.仅(A)入选.
解二 设A为m×n矩阵,B为n×s矩阵.由AB=O及命题2.2.3.1(4)知,秩(A)+秩(B)≤n,而A≠O,B≠O,必有秩(A)≥1,秩(B)≥1,从而秩(A)<n,秩(B)<n,即A的列向量组线性相关,B的行向量组线性相关.仅(A)入选.
解三 设A为m×n矩阵,B为n×s矩阵.因A≠O,B≠O,且AB=O.由命题2.2.3.1(4)得到秩(A)<n,秩(B)<n,故
(1)A的列秩=秩(A)<n,即A的列向量组线性相关(见命题2.3.2.1(2));
(2)B的行秩=秩(B)<n,即B的行向量组线性相关.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/sVV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)=求f′(χ)并讨论f′(χ)在χ=0处的连续性.
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设函数f(χ)在[0,2π]上连续可微,f′(χ)≥0,证明:对任意正整数n,有|∫02πf(χ)sinnχdχ|≤[f(2π)-f(0)].
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。设目前农村人口与城镇人口相等,即。
随机试题
《中华人民共和国合同法》第286条规定:发包人未按照约定支付价款的,承包人可以催告发包人在合理期限内支付价款。发包人逾期不支付的,除按照建设工程的性质不宜折价、拍卖的以外,承包人可以与发包人协议将该工程折价,也可以申请人民法院将该工程依法拍卖。建
患者,男,30岁。胸部损伤,多根肋骨多处骨折,出现反常呼吸,其原因为()。
A.左肾上极B.肝静脉出肝处C.肝圆韧带裂出现D.肝右后下静脉出现E.肝门静脉及其右支出现第二肝门出现的标记是
工作A的工作持续时间为3天,该工作有二项紧后工作,工作持续时间分别为4天、6天、3天;最迟完成时间分别为16天、12天、11天,则工作A的最迟开始时间为第( )天。
国际推介的对象主要是承销商。()
教育心理学的研究和其他科学研究都应遵循的基本原则是()
在母亲离开时无特别紧张或忧虑的表现,在母亲回来时,欢迎母亲的到来,但这只是短暂的,这种孩子可能属于()依恋类型。
沟通障碍,是指信息在传递和交换过程中,由于信息意图受到干扰或误解,而导致沟通失真的现象。根据上述定义,下列最不存在沟通障碍的一项是:
提出“地方各级人民政府要坚持将普及九年义务教育和扫除青壮年文盲作为教育工作的‘重中之重’”的是()。
Mostpeoplehaterockmusic.【C1】______Iamnotanunreasonableorbiasedperson【C2】______nature,twovividandstriking【C3】____
最新回复
(
0
)