首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,α5均是4维列向量,记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5)。已知方程Ax=α5有通解k(1,-1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程Bx=0的解的是(
设α1,α2,α3,α4,α5均是4维列向量,记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5)。已知方程Ax=α5有通解k(1,-1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程Bx=0的解的是(
admin
2022-03-23
68
问题
设α
1
,α
2
,α
3
,α
4
,α
5
均是4维列向量,记A=(α
1
,α
2
,α
3
,α
4
),B=(α
1
,α
2
,α
3
,α
4
,α
5
)。已知方程Ax=α
5
有通解k(1,-1,2,0)
T
+(2,1,0,1)
T
,其中k是任意常数,则下列向量不是方程Bx=0的解的是( )。
选项
A、(0,3,-4,1,-1)
T
B、(1,-2,-2,0,-1)
T
C、(2,1,0,1-1)
T
D、(3,0,2,1,-1)
T
答案
B
解析
由Ax=α
5
的通解k(1,-1,2,0)
T
+(2,1,0,1)
T
知,α
5
可由α
1
,α
2
,α
3
,α
4
表出为
α
5
=(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
即(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
-α
5
=0
即Bx=(α
1
,α
2
,α
3
,α
4
,α
5
)x=(α
1
,α
2
,α
3
,α
4
,α
5
)
=0
其中k为任意常数。
因为Bx=0的解中,无论k为何值,x
4
,x
5
不可能为0,故选B.
注意:选项A,取k=-2,Bx=0的解是(0,3,-4,1,-1)
T
.
选项C,取k=0,Bx=0的解即是(2,1,0,1,-1)
T
。
选项D,取k=1,Bx=0的解即是(3,0,2,1,-1)
T
。
转载请注明原文地址:https://www.kaotiyun.com/show/s6R4777K
0
考研数学三
相关试题推荐
若函数u=,其中f是可微函数,且=G(x,y)u,则函数G(x,y)=()
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
已知A=(aij)n×n,B=(bij)n×n…且有关系bij=系式正确的是().
在区间[0,π]上随机取两个数X与Y,则概率P{cos(X+Y)<0)=__________.
求幂级数的收敛区间与和函数f(x).
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛’’
设(X,Y)的联合密度函数为(1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求fX|Y(x|y).
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=f(x-t)dt,G(x)=xg(xt)dt,则当x→0时,F(x)是G(x)的().
设f(x)连续,∫0xtf(x-t)dt=1-cosx,求∫0π/2f(x)dx.
随机试题
女性,45岁,患腰椎管狭窄症3年,经卧硬板床和骨盆牵引等保守治疗无效。现病人症状逐渐加重,行走100~200m即出现下肢疼痛,需休息或下蹲数分钟后才能缓解,被收入院准备接受手术治疗。此锻炼方式最主要的目的是为了预防()。
肾动脉狭窄由动脉粥样硬化引起者,常见的肾外表现为
下列含有鸟嘌呤结构的抗病毒药物是
在丹毒的早期,首选的物理疗法是
下列关于急性肾小球肾炎的描述,正确的是
依据刑事诉讼法的规定,有权决定公安机关负责人回避的机关是()。
在偏差分析中,具有适用性强、信息量大、可以反映各种偏差变量和指标且有助于计算机辅助管理的方法是()。
在卫生方面,施工现场应配备常用的()。
《统计法实施细则》规定的对企业事业组织的最高罚款额度是()。
A.rootB.controlC.subjectsD.howeverE.realityF.sharpG.intenseH.measureI.expressJ.impulsiveK.pessimist
最新回复
(
0
)