首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
admin
2019-01-29
77
问题
(Ⅰ)设f(x),g(x)在点x=x
0
处可导且f(x
0
)=g(x
0
)=0,f′(x
0
)g′(x
0
)<0,求证:x=x
0
是f(x)g(x)的极大值点.
(Ⅱ)求函数F(x)=
(x∈(—∞,+∞))的值域区间
选项
答案
(Ⅰ)由于[*]=f′(x
0
)g(x
0
)+f(x
0
)g′(x
0
)=0,因此x=x
0
是f(x)g(x)的驻点,进一步证明是它的极大值点. 由条件f′(x
0
)g′(x
0
)<0 [*]f′(x
0
)<0,g′(x
0
)>0(或f′(x
0
)>0,g′(x
0
)<0),由 [*] g′(x
0
)=[*] 及极限的保号性质[*]δ>0,当x∈(x
0
—δ,x
0
+δ,x≠x
0
时 [*] [*]x∈(x
0
,x
0
+δ)时 f(x)<0(>0), g(x)>0(<0); x∈(x
0
—δ,x
0
)时 f(x)>0(<0), g(x)<0(>0) x∈(x
0
—δ,x
0
+δ),x≠x
0
时 f(x)g(x)<0=f(x
0
)g(x
0
) x=x
0
是f(x)g(x)的极大值点. (Ⅱ)由题设知F(x)是(—∞,+∞)上连续的偶函数,且由 [*] F(x)在(—∞,0]上[*],在[0,+∞)上[*]. 由于F(0)=0.又 [*] 因此,函数F(x)的值域区间是[0,[*]arctant2).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rwj4777K
0
考研数学二
相关试题推荐
求微分方程(3xx+2xy一yx)dx+(x2一2xy)dy=0的通解.
求极限:.
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=1一=0下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
如图1.3—1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:.
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA一1α≠b.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
设α1,α2……αm(m≥2)为正数,则=_________。
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
焊接接头的四种基本形式不包括()接头。
与腰痛最有关的肌肉是
男性,52岁,发现右侧腹股沟区包块10年,站立时明显,平卧后消失,有时可降入阴囊,可还纳。查:右侧腹股沟区肿块,约8cm×6cm大小,可还纳,外环容3指,压迫内环后肿块不再出现。该患者最容易出现的并发症是
成年人脊柱强直固定,多见于
A伤食B湿热C风寒D伤阴E伤阳泄泻而舌苔厚腻为
因土地利用规划用地指标已经用完,某市一企业经市政府批准在远郊租用张村50mm2规划建设用地范围外的农用地,用于新建厂房扩大生产。张村村民委员会核算租期内的土地租金总收益大于农用收益,且高于土地征收价格,于2006年10月31日与该企业正式签订了50年的出租
库存现金和银行存款同属于货币资金,因此清查方法相同。()
挂失止付是票据丧失后票据权利补救的必经程序,失票人只有对丧失的票据办理挂失止付后,方可向人民法院申请公示催告。()
2014年甲、乙拟投资设立某小型微利企业,预计2015年应纳税所得额为10万元,注册会计师对其建议可以将企业分立为甲、乙两个企业,预计分立后甲、乙的2015年应纳税所得额分别为6万元和4万元。这属于()税收筹划方法的运用。
树枝:柴火
最新回复
(
0
)