首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1=xex+e2x,y2=xex+e一x,y3=xex+e2x—e一x是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
已知y1=xex+e2x,y2=xex+e一x,y3=xex+e2x—e一x是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
admin
2016-07-29
54
问题
已知y
1
=xe
x
+e
2x
,y
2
=xe
x
+e
一x
,y
3
=xe
x
+e
2x
—e
一x
是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
选项
答案
y"一y’一2y=(1—2x)e
x
.
解析
y
1
—y
2
=e
2x
一e
一x
,y
2
一y
3
=e
一x
都是相应齐次方程的解.
而(y
1
一y
2
)+(y
1
—y
3
)=e
2x
也是齐次方程的解,e
2x
与e
一x
是两个线性无关的解,而y
2
=xe
x
+e
一x
是非齐次方程的解,从而y
2
一e
一x
=xe
x
也是非齐次方程的解,由e
一x
e2
x
是齐次方程的解,可知特征根r
1
=一1,r
2
=2,特征方程为(r+1)(r一2)=0,即r
2
一r一2=0.设所求非齐次方程为y"一y’一2’,=f(x).将非齐次解xe
x
代入,得
f(x)=(xe
x
)
"
一(xe
x
)
’
一2xe
x
=(1—2x)e
x
故所求方程为y"一y’一2y=(1—2x)e
x
.
转载请注明原文地址:https://www.kaotiyun.com/show/rWT4777K
0
考研数学三
相关试题推荐
法治思维不仅认为法律是治国理政的手段和工具,更强调法律是治国理政的最高准则,治国理政必须奉守法律至上原则。法律的至上性,具体表现为()。
法律明文规定为犯罪行为的,依照法律定罪处刑,法律没有明文规定为犯罪行为的,不得定罪处刑,这体现的是刑法的()。
在“五位一体”总体布局中生态文明建设是其中一位,在新时代坚持和发展中国特色社会主义基本方略中坚持人与自然和谐共生是其中一条基本方略,在新发展理念中绿色是其中一大理念,在三大攻坚战中污染防治是其中一大攻坚战。这“四个一”体现了()。
1930年5月毛泽东为反对当时中国工农红军中的教条主义思想而写的关于调查研究问题的重要著作,同时也是毛泽东最早的一篇马克思主义的哲学著作是()。
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设A,B是同阶正定矩阵,则下列命题错误的是().
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
下列复合函数的一阶偏导数:(1)z=x3y-xy2,x=scost,y=ssint;(2)z=x2lny,x=y/x,y=3s-2t;(3)z=xarctan(xy),x=t2,y=set:(4)z=xey+ye-x,x=et,y=st2.
求f(x)=的间断点并判断其类型.
随机试题
A企业由张某、李某、王某三人共同组建,总投资为人民币400万元。张某按总投资的25%出资,方式为自有专利技术,李某按总投资50%以现金出资,王某按投资总额25%以自有厂房作价出资。三方在合伙协议中约定,无论盈亏均按出资比例分担。在经营过程中,该合伙企业
男性,58岁,患右侧腹股沟斜疝病史3年。今晨便后疝突出,不能回纳,局部疼痛,伴恶心,无呕吐6小时就诊。手术发现肠管绞窄坏死,应采取的治疗是
在软膏基质中加入药物的方法,说法错误的是
造成设备有形磨损的原因是()。
以下各项中,不属于原始凭证基本内容的是()。
根据以下资料回答以下3题:买卖双方按CIF条件和信用证支付方式达成一项买卖粮食的大宗交易,合同规定“l~5月份分批装运,每月装运1万公吨”。买方按合同规定开出了信用证,卖方在l~2月份,每月装运l万公吨并提交了符合信用证要求的单据。3月份卖方因故未按时装
最能发挥教师在教学中的主导作用的教学组织形式是()。
阅读下面材料,回答问题。随机抽取80名高中生,询问他们对高中分文理科是赞成还是反对,以此考查他们对分科的意见是否有显著性差异,结果是赞成分科的46人,反对分科的34人。欲考查学生对分科的意见是否有显著性差异,合适的方法是
和平与发展是当今世界的两大主题,其中和平问题是指()。
设有栈S和队列Q,初始状态均为空。首先依次将A,B,C,D,E,F入栈,然后从栈中退出三个元素依次入队,再将X,Y,Z入栈后,将栈中所有元素退出并依次入队,最后将队列中所有元素退出,则退队元素的顺序为
最新回复
(
0
)