首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2019-04-22
82
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,因f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以存在ξ
1
∈(0,a), ξ
0
∈(b,a+b),ξ
1
<ξ
2
,使得 |f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将f(a+b)一f(b)一f(a)中的b改写为x,构造辅助函数 F(x)=f(a+x)一f(x)一f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调递减,所以 F’(x)=f’(a+x)一f’(x)≤0, 于是有F(b)≤F(0)=0,即f(a+b)一f(b)一f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rRV4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求_______.
微分方程xy’+y=0满足条件y(1)=1的解是y=____________.
设B是3阶非零矩阵,且AB=O,则a=_________.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=__________。
设A是一个n阶矩阵,且A2一2A一8E=0,则r(4E—A)+r(2E+A)=__________?
齐次线性方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=O,则()
设曲线y=χ2+aχ+b和2y=-1+χy3在点(1,-1)处相切,其中a,b是常数,则
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么中,仍是线性方程组Ax=b特解的共有()
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
随机试题
数据模型是数据库系统的数学形式框架,它包括数据的静态特征、数据的动态特征和_________
Whatdrawsmyfirm’sattentionisthedesignofcities.WhenwedesignedAmerica’sfirst"green"officebuildingtwodecadesag
下列哪种是正常的前列腺液外观
综合布线系统单模光纤信道采用标称波长为()。
体育实践课程的学科性质是以()为主的。
手机:短信
独生子女在找工作的时候遭受歧视,很多用人单位都不愿意聘用独生子女,对此。你有什么看法?
俗话说:三岁定一生。意思是人的很多行为和习惯,一般在三岁以前就会形成。下列选项最能削弱上述论点的是:
某国家工作人员李某与社会上的张某勾结,由李某利用职务便利同张某共同骗取国家大量财物。对上述行为的定性为()。
A、 B、 C、 D、 C
最新回复
(
0
)