首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: ∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: ∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
admin
2019-04-17
92
问题
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,
0≤g(x)≤1.证明:
∫
a
a-∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
考虑到待证不等式的构造及其性质:当a=b时,不等式化为等式,可将b换为x.令 φ(x)=∫
a
x
f(u)g(u)du-∫
a
a+∫
a
x
g(t)dt
f(u)du, 则φ(a)=0,且φ′(x)=f(x)g(x)-f[a+∫
a
x
g(t)dt]g(x).由(I)知,∫
a
x
g(t)dt≤x-a, 故a+∫
a
x
g(t)dt≤a+x—a=x.由f(x)单调增加,有f(x)≥f[a+∫
a
x
g(t)dt],于是 φ′(x)=f(x)g(x)一f[a+∫
a
x
g(t)dt]g(x)≥0. 故φ(x)单调不减,又φ(a)=0,故φ(b)≥0,即∫
a+∫
a
b
g(t)dt
b
f(x)dx≤∫
a
b
f(x)g(x)dx .
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rJV4777K
0
考研数学二
相关试题推荐
已知A是正定矩阵,证明|A+E|>1.
求下列不定积分:
证明n阶行列式
求极限
设b>a>0,证明:
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(2006年试题,21)已知曲线l的方程为(I)讨论L的凹凸性;(Ⅱ)过点(一1,0)引L的切线,求切点(xo,yo),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤xo的部分)及x轴所围成的平面图形的面积.
随机试题
CO2气体保护焊拉丝式焊枪的主要特点是送丝均匀稳定、结构简单。
下列关于领导和管理的关系的说法正确的是()
伤寒发病第1周,下列哪项检查阳性率最高()
Ⅱ型糖尿病血糖升高的主要原因不包括的是
患者,男,46岁。因急性肠梗阻3天入院,患者诉口渴,全身乏力,不能坐起。检查:脉搏120次/分,血压75/60mmHg,眼窝凹陷,皮肤弹性差,尿比重1.025,血清Na+134mmol/L。最可能的诊断是
学生是一个学校的主体,学生应该履行的义务有()。
下列关于联合国的说法正确的是:
2022年国务院政府工作报告指出,国内生产总值达到()万亿元,增长8.1%。
"Down-to-earth"meanssomeoneorsomethingthatishonest,realisticandeasytodealwith.Itisapleasuretofind【31】______w
______isthemasterpieceofJaneAustin.
最新回复
(
0
)