首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,α3线性无关,证明:3α1+2α2,α2-α3,4α3-5α1线性无关.
已知n维向量α1,α2,α3线性无关,证明:3α1+2α2,α2-α3,4α3-5α1线性无关.
admin
2020-06-05
54
问题
已知n维向量α
1
,α
2
,α
3
线性无关,证明:3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关.
选项
答案
方法一 如果k
1
(3α
1
+2α
2
)+k
2
(α
2
-α
3
)+k
3
(4α
3
-5α
1
)=0,那么 (3k
1
-5k
3
)α
1
+(2k
1
+k
2
)α
2
+(﹣k
2
+4k
3
)α
3
=0 注意到α
1
,α
2
,α
3
线性无关,于是3k
1
-5k
2
=0,2k
1
+k
2
=0,﹣k
2
+4k
3
=0.由克拉默法则得 k
1
=0,k
2
=0,k
3
=0.故向量组3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关. 方法二 由于 (3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
)=(α
1
,α
2
,α
3
)[*] 又因为矩阵[*]可逆,所以R(β
1
,β
2
,β
3
)=R(α
1
,α
2
,α
3
)=3,从而3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/r8v4777K
0
考研数学一
相关试题推荐
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
设A,B是n阶矩阵,则C=的伴随矩阵是
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
α1,α2,α3,β1,β2均为4维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
随机试题
行政行为撤销的效力可一直追溯到行政行为()。
在电火花加工中存在吸附效应,它主要影响()。
在实验室常造成细胞培养污染的微生物是
A5.0用来表示蒸压加气混凝土的何种性能?[2010--035]
某承包人为赶工期,曾在雨中铺筑沥青混凝土,对于这个质量缺陷应采取的处理方法是()。
下列有关审计工作底稿的存在形式的说法中,错误的是()。
国际金融危机的成因不包括()。
调查表明,最近几年来,成年人中患肺结核的病例逐年减少。但是,以此还不能得出肺结核发病率逐年下降的结论。以下哪项如果为真则最能加强上述推论?
关于法律关系,下列说法错误的是()
有以下程序#include#includetypedefstruct{charname[10];charsex;intage;}STU;voidfun(STU*t){strcpy((*t).name,"Tong");
最新回复
(
0
)