首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 设函数f(x)=ln(x
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 设函数f(x)=ln(x
admin
2019-06-01
44
问题
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x
2
-ax+1),则称函数f(x)具有性质P(a).
设函数f(x)=ln(x)+
(x>1),其中b为实数
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
选项
答案
由f(x)=ln x+[*],得f'(x)=[*].因为x>1时,h(x)=[*]>0,所以函数f(x)具有性质P(b). (ii)当b≤2时,由x>l得x
2
-bx+1≥x
2
-2x+1=(x-1)
2
>0,所以f'(x)>0,从而函数f(x)在区间(1,+∞)上单调递增.当b>2时,解方程x
2
-bx+1=0得x
1
=[*].因为x
1
=[*] 所以当x∈(1,x
2
)时,f'(x)<0;当x∈(x
2
,+∞)时,f'(x)>0;当x=x
2
时,f'(x)=0. 从而函数f(x)在区间(1,x
2
)上单调递减,在区间(x
2
,+∞)上单调递增. 综上所述,当b≤2时,函数f(x)的单调增区间为(1,+∞);当b>2时,函数f(x)的单调减区间为(1,[*]),单凋增区间为([*],+∞).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/r0Fq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
下面是一篇小学四年级的教学材料及其教学片段,请用中文从教学方法和活动设计两个方面进行简要评析。教学片段1.Joinus(PPT呈现MacDonald的图片)T:Whoishe?Ss:HeisMacDonald.
写一篇150词左右的小作文,谈谈科技发展对孩子的不良影响。
黑暗中他们迷失了方向,他们的船听凭暴风雨的摆布。
已知圆锥的底面直径为4cm,其母线长为3cm,则它的侧面积为______。
下列性质中,等腰三角形具有而直角三角形不一定具有的是()。
在比例尺是1:8的图纸上,甲、乙两个圆的直径比是2:3,那么甲、乙两个圆的实际的直径比是()。
扇形的弧长为2π,面积为6π,那么这个扇形的半径为()。
圆的半径和周长成______比例,圆的面积与半径______比例。
如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠ACD=120°.(1)试探究直线CD与⊙O的位置关系,并说明理由;(2)若BD的长度为5,求△ACD中CD边的高.
阅读下列材料自然界某些动物在陆地上出生,但是出生后就去海里生活,海龟就是这样。小海龟在陆地上从蛋里孵化出来,但是不久后就走向海洋。大多数的海龟生命的前半部分在遥远的海洋中度过,但是在最后会移向靠近陆地的海岸。海龟的大部分时间都在海洋里漫游,它们的
随机试题
病例患者:男,35岁,公司职员。2周前出现发热、全身不适、疲乏无力,诊为“感冒”。一周前出现心慌、胸痛、呼吸困难、下肢水肿,逐渐发生头昏。体检发现:体温38.5℃,脉搏120次/分钟,颈静脉怒张,肺部哕音,肝脏肿大,闻及心律失常和第三心音。X线检查:心
法产生的主要标志不包括:()
机会成本和沉没成本不仅运用在投资分析中,也出现在企业财务会计的记录中。()[2006年考题]
使用劳动防护用品前应进行一次外观检查,检查的目的是()。
符合开立一般存款账户、其他专用存款账户和个人银行结算账户条件的,银行办理开户手续,并于开户之日起()个工作日内向中国人民银行当地分支行备案。
健康的电影市场,在大制作主流电影、各种类型化商业电影之外,应该容纳风格、题材、类型多样的艺术电影。但是,由于如今早就不是电影形态一统天下的局面,媒介越来越多样化,而观众的消费需求也被媒介的多样化逐渐分化。所以,艺术电影如果要进入影院被观众消费,那么它必须具
项目沟通中不恰当的做法是(251)。
Whatwasthewomangoingtobuy?
FlatswerealmostunknowninBritainuntilthe1850swhentheyweredeveloped,alongwithotherindustrialdwellings,forthela
HowAdvertisementIsDone?A)Whenwechooseawordwedomorethangiveinformation;wealsoexpressourfeelingsaboutwha
最新回复
(
0
)