首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维实向α=(α1,α2,…,αn)T≠0,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t; (2)求可逆矩阵P,使P-1AP成对角矩阵.
设n维实向α=(α1,α2,…,αn)T≠0,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t; (2)求可逆矩阵P,使P-1AP成对角矩阵.
admin
2017-06-26
100
问题
设n维实向α=(α
1
,α
2
,…,α
n
)
T
≠0,方阵A=αα
T
.
(1)证明:对于正整数m,存在常数t,使A
m
=t
m-1
A,并求出t;
(2)求可逆矩阵P,使P
-1
AP成对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m-1
α
t
=(α
T
α)
m-1
(αα
T
)=[*]=t
m-1
A,其中t=[*]. (2)A≠O,[*]1≤r(A)=r(αα
T
)≤r(α)=1,[*]r(A)=1,因为实对称矩阵A的非零特征值的个数就等于A的秩,故A只有一个非零特征值,而有n-1重特征值λ
1
=λ
2
=…=λ
n-1
=0,计算可得属于特征值0的线性无关特征向量可取为(设a
i
≠0): [*] 由于A的全部特征值之和等于A的主对角线元素之和[*],故得A的唯一的非零特征值为λ
n
=[*]=α
T
α,且由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α可得口为对应于λ
n
的一个特征向量.令矩阵P=[ξ
1
… ξ
n-1
α],则有P
-1
AP=diag(0,0,…,0,[*])为对角矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qVH4777K
0
考研数学三
相关试题推荐
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设矩阵,则A3的秩为__________.
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=________.
设n阶方程A=(a1,a2,…,an),B=(β1,β2,…,βn),AB=(γ1,γ2,γn),记向量组(Ⅰ):a1,a2,…,an(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
设函数f(x)在(一∞,+∞)内连续,其导函数y=f’(x)的曲线如图所示,则f(x)有
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
随机试题
A吡格列酮B格列苯脲C二甲双胍D阿卡波糖E罗格列酮通过促进组织对葡萄糖摄取和利用发挥作用的药物是
水利工程建设项目按其对社会和国民经济发展的影响分为()。
假设其他因素不变,销售量超过保本点以后,销售量越大则经营杠杆系数越小。()
根据文物保护保护法的规定,下列不属于国家所有的文物是()。
马克思认为,复杂劳动等于倍加的简单劳动,这主要说明教育具有哪种功能()。
根据以下资料,回答下列问题。2010年,全社会固定资产投资278140亿元,同比增长23.8%,比上年回落6.2个百分点。其中,城镇固定资产投资完成241415亿元,同比增长24.5%,比上年回落5.9个百分点。在城镇固定资产投资中,全年工业完成投资额9
为提高移栽树苗的成活率,常采用根部带土和去掉部分枝叶的措施,其目的是:
除了夏威夷之外,下面()州也是美国本土以外的州。
任何一个具有两个属性的关系
A、ThewomanmayhelpDavidwithhisproject.B、Davidhasn’tevenstartedworkingonhisprojectyet.C、ThemanhastoldDavidto
最新回复
(
0
)