首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
admin
2021-02-25
83
问题
设y
1
=e
x/2
+e
-x
+e
x
,y
2
=2e
-x
+e
x
,y
3
=e
x/2
+e
x
是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
选项
A、C
1
e
x/2
+C
2
e
-x
+2e
x/2
+e
-x
+e
x
B、C
1
e
x/2
+C
2
e
-x
+2e
x
+e
-x
C、C
1
e
x
+C
2
e
-x
+3e
x/2
D、C
1
e
x/2
+C
2
e
-x
+2e
x
答案
A
解析
由解的结构定理,知y
1
-y
3
=e
-x
是对应的齐次方程的解.y
1
-y
2
=e
x/2
-e
-x
也是对应的齐次方程的解.
从而Y=e
x/2
是齐次方程的解,且e
x/2
与e
-x
线性无关.
即对应的齐次方程的通解为y=C
1
e
x/2
+C
2
e
-x
.
又y
*
=4y
1
-y
2
-2y
3
=2e
x/2
+e
-x
+e
x
为非齐次方程的解,综上,应选A.
转载请注明原文地址:https://www.kaotiyun.com/show/qO84777K
0
考研数学二
相关试题推荐
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
(1993年)设平面图形A由χ2+y2≤2χ与y≥χ所确定,求图形A绕直线χ=2旋转一周所得旋转体的体积。
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(2013年)设曲线L的方程为y=(1≤χ≤e)(Ⅰ)求L的弧长;(Ⅱ)设D是由曲线L,直线χ=1,χ=e及χ轴所围平面图形.求D的形心的横坐标.
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
设,已知线性方程组Ax=b存在2个不同的解.(1)求λ,a;(2)求方程组Ax=b的通解.
曲线y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕X轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限S(t)/F(t)
随机试题
互联网未来的发展在空间、时间以及中介技术上可能呈现出三个方面的趋势,即平民化、智能化和实时化。()
房间隔缺损与室间隔缺损的主要区别点是
患者女,35岁。在春节乘长途汽车回家的路上突然感到心前区发闷、呼吸困难,出汗,觉得自己就要不行了,自己不能控制自己,自己要发疯了。为此感到紧张、害怕。既往体健。被紧急送到医院急诊,未做特殊处理,半小时后症状消失。患者最可能的诊断是
在制定材料消耗定额时,可以用来确定材料损耗率的方法是()。
浙江浙海服装进出口公司(3313910194)在对口合同项下进口蓝湿牛皮(法定计量单位:千克),由浙江嘉宁皮革有限公司(3313920237)加工成牛皮沙发革。承运船舶在帕腊纳瓜港装货启运,泊停釜山港转“HANSASTAVANGER’’号轮(航次号HV3
毛泽东同志总结中国近代历次运动失败时曾说:“没有农民办不成大事,光有农民办不好大事。”下列事件属于“光有农民办不好大事”的是()。
党的十八大提出了到2020年全面建成小康社会的奋斗目标,这是我们党向人民、向历史作出的庄严承诺,要完成这一目标,最艰巨的任务是()。
かんじゃ
Allofthetechnologicaladvancesthathaveincreasedthequalityofmusichavenotchangedthefundamentalimpactofrecordedm
A、IfhisseminaronthemodernAmericannoveliswelcomed.B、Ifhesignshisname,Jennywon’tworkhardasever.C、IfJennycan
最新回复
(
0
)