首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
admin
2019-07-22
62
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);
(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)一f(a)=f’(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
) [*] (0,δ),使得 [*] 又由于[*],对(*)式两边取x
0
→0
+
时的极限 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qLN4777K
0
考研数学二
相关试题推荐
求下列导数:(1)设y=y(χ)由确定,求(2)设y=y(χ)由确定,求
设f(χ)=|χ3-1|g(χ),其中g(χ)连续,则g(1)=0是f(χ)在χ=1处可导的().
f(x)=则f(x)在x=0处()
设函数f(x)在|x|
求函数f(χ)=(2-t)e-tdt的最大值与最小值.
证明:当0<χ<1时,(1+χ)ln2(1+χ)<χ2.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=_________.
(02年)某闸门的形状与大小如图2.11所示.其中直线l为对称轴.闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
发生有心衰时,引起组织水肿的主要原因()
小儿直肠脱垂非手术治疗要点是
关于民事诉讼中的公开审判制度,下列哪一选项是错误的?()
房地产开发成本费用中城市建设配套费用包括:小区锅炉、变电室、煤气调压站等附属工程费和小区自来水、雨水、污水、道路、室外照明等室外工程费。()
关于图书馆书库的设计,错误的是:(2019年第48题)
上官夫妇目前均刚过35岁,打算20年后即55岁时退休,估计夫妇俩退休后第一年的生活费用为8万元(退休后每年出从退休基金中取出当年的生活费用)考虑到通货膨胀的因素,夫妇俩每年的生活费用预计会以年4%的速度增长。夫妇俩预计退休后可生存25年,现在拟用20万元作
一般保证的保证人与债权人未约定保证期间的,保证期间为主债务履行期届满之日起()。
劳动保障监察的职责有()。
充分尊重志愿服务组织的社会性、志愿性、公益性、非________性特点,引导志愿服务组织按照法律法规和章程开展活动,依法自治。着力推进志愿服务组织、志愿者与志愿服务活动共同发展,________志愿服务组织基础。填入画横线部分最恰当的一项是:
科学家在研究阴雨多的城市抑郁症发病率高的原因时发现,光线不足可以【146】人们的抑郁情绪,并因此【147】了光照疗法:亮光正面照30分钟以上可明显【148】人的情绪。眼是人主要的感觉器官,明亮光线通过刺激视觉能振奋精神,消除抑郁,使人充满信心与希望。可从个
最新回复
(
0
)