首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤1/2ln2.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤1/2ln2.
admin
2022-10-25
73
问题
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫
0
1
f(x)dx|≤1/2ln2.
选项
答案
由|f(x)|=|f(x)-f(1)|≤|arctanx-arctan1|=|arctanx-π/4|得|∫
0
1
f(x)dx|≤∫
0
1
|f(x)|dx≤∫
0
1
|arctanx-π/4|dx=∫
0
1
(π/4-arctanx)dx=π/4-∫
0
1
arctanxdx=π/4-xarctanx|
0
1
+∫
0
1
x/(1+x
2
)dx=1/2ln(1+x
2
)|
0
1
=1/2ln2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qIC4777K
0
考研数学三
相关试题推荐
1一a+a2一a3+a4一a5.先把第2,3,4,5行都加至第1行,再按第1行展开,得D5=1一aD4,一般地有Dn=1—aDn-1(n≥2),并应用此递推公式.
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
[*]
在区间(—1,1)上任意投一质点,以X表示该质点的坐标,设该质点落在(—1,1)中任意小区间内的概率与这个小区间的长度成正比,则
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设f(x)在x0的邻域内四阶可导,且|f4(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
证明:=1.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:(1)存在ξ∈(1,2),使得.(2)存在7E(1,2),使得∫18f(t)dt=ξ(ξ一1)f’(η)ln2.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
随机试题
忧郁孤独,少言语但重感情,这样的游客属于()。
作用原理与其他几种药物不属同一类的药物是
易散气走味的中药是易变色的中药是
建筑物上安装的光伏发电系统,不得降低相邻建筑物的()。
在室外燃气管道安装中,聚乙烯燃气管道可采用()。
设置湿式自动喷水灭火系统的房间,起火时喷头动作喷水,水流指示器动作并报警,报警阀动作,延迟器充水,启泵装置动作报警并直接启动消防水泵,该系统应选择的启泵装置是()。
由于域名地址不方便记忆,输入时也容易出错,为此人们采用了一套域名机制,即域名地址。每一个服务器都有一个唯一的域名地址,并且与IP地址一一对应。
()负责受理短期融资券的发行注册。
第二次世界大战后,国际资本流动格局发生了巨大变化,出现了许多新特点,包括()。
______,locatedatthesouthernendofLakeMichigan,isthesecondlargestcityinU.S.A.
最新回复
(
0
)