首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,﹢∞)上连续,下述命题: ①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数; ②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则F(X)必是偶函数; ③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
设f(x)在(-∞,﹢∞)上连续,下述命题: ①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数; ②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则F(X)必是偶函数; ③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
admin
2018-12-21
70
问题
设f(x)在(-∞,﹢∞)上连续,下述命题:
①若对任意a,∫
-a
a
f(x)dx=0,则f(x)必是奇函数;
②若对任意a,∫
-a
a
f(x)dx=2∫
0
a
f(x)dx,则F(X)必是偶函数;
③若f(x)为周期为T的奇函数,则F(x)=∫
0
x
f(t)dt也具有周期T.
正确的个数是 ( )
选项
A、0
B、1.
C、2.
D、3.
答案
D
解析
①是正确的.记F(a)=∫
-a
a
f(x)dx,有F
’
(a)=f(a)﹢f(-a).
由于F(a)=0,所以F
’
(a)
,即f(a)=-f(-a),f(x)为奇函数.
②是正确的.记F(a)=∫
-a
a
f(x)dx-2∫
0
a
f(x)dx,F
’
(a)=f(a)﹢f(-a)-2f(a)0,所以f(-a)=
f(a),f(x)为偶函数.
③是正确的. F(x﹢T)-F(x)=∫
0
x﹢T
f(t)dt-∫
0
x
f(t)df=∫
x0
x﹢T
f(t)dt
=∫
0
T
f(t)dt=f(t)dt=0,
所以F(x)具有周期T故应选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/qAj4777K
0
考研数学二
相关试题推荐
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2006年)已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(χ0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于χ≤χ0的部分)及χ轴所围成的平面图形的面积.
(2012年)设函数f(χ,y)可微,且对任意χ,y都有,则使不等式f(χ,y)<f(χ,y)成立的一个充分条件是【】
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(1997年)就k的不同取值情况,确定方程χ-sinχ=k在开区间(0,)内根的个数,并证明你的结论.
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
(2013年)设函数f(χ)=lnχ+.(Ⅰ)求f(χ)的最小值;(Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
(1991年)曲线y=的上凸区间是=_______.
随机试题
选区的大小、主要是根据每一选区选__________代表划分。
简述公民和组织维护国家安全的主要义务。
求
患者,女,40岁,平素月经周期规律,经量中等,经期3~4日,普查发现子宫肌瘤。患者咨询有关信息,下列回答不妥的是()
在下列机构中,不具有法人资格的是()。
有效毛收入乘数是估价对象房地产的()除以其有效毛收入所得的倍数。
如图5—7—6所示钢制竖直杆DB与水平杆AC刚接于B,A端固定,P、l、a与圆截面杆直径d为已知。按第三强度理论的相当应力σeq3为()。
会计账簿发生隔页、缺号时,应当按会计制度规定的方法更正外,并由()在更正处盖章。
在VisualFoxPro中,下列关于表的描述中正确的是
TheBlackForestis______.Whenhewaswalkingintheforest,______ranafterhim.
最新回复
(
0
)