首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有 [∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx; (Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有 [∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx; (Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
admin
2018-12-21
67
问题
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有
[∫
a
b
f(x)g(x)dx]
2
≤∫
a
b
f
2
(x)dx∫
a
b
g
2
(x)dx;
(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上连续,则有
[∫
0
1
f(x)dx]
2
≤∫
0
1
f
2
(x)dx.
选项
答案
(I)令φ(x)=[∫
a
x
f(t)g(t)dt]
2
-∫
a
x
f
2
(t)dt∫
a
x
g
2
(t)dt,有φ(a)=0及 φ
’
=2∫
a
x
f(t)g(t)·f(x)g(x)-f
2
(x)∫
a
x
g
2
(t)dt -g
2
(x)∫
a
x
f
2
(t)dt =-∫
a
x
[f
2
(x)g
2
(t)-2f(t)g(t)f(x)g(x)﹢g
2
(x)f
2
(t)]dt =-∫
a
x
[f(x)g(t)-g(x)f(t)]
2
dt≤0,x≥a. 所以当x≥a时,φ(x)≤0.令x=b,得 [∫
a
b
f(t)g(t)]
2
≤∫
a
b
f
2
(t)dt∫
a
b
g
2
(t)dt. 证毕. (Ⅱ)令a=0,b=1,g(x)=1,代入(I)中已证的不等式,有 [∫
0
1
f(t)dt]
3
≤∫
0
1
f
2
(t)dt∫
0
1
dt=∫
0
1
f
2
(t)dt. 即[∫
0
1
f(x)dx]
2
≤∫
0
1
f
2
(x)dx.证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/q8j4777K
0
考研数学二
相关试题推荐
(2002年)矩阵A=的非零特征值是_______.
(2002年)已知函数f(χ)在(0,+∞)上可导,f(χ)>0,f(χ)=1,且满足求f(χ).
(2012年)设区域D由曲线y=sinχ,χ=±,y=1围成,则(χy5-1)dχdy=【】
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
(2014年)设函数f(χ)=,χ∈[0,1].定义函数列:f1(χ)=f(χ),f2(χ)=f(f1(χ)),…,fn(χ)=f(fn-1(χ)),…记Sn是由曲线y=fn(χ),直线χ=1及χ轴所围成平面图形的面积,求极限nSn.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
问λ为何值时,线性方程组有解,并求出解的一般形式.
求二重积分,直线y=2,y=x所围成的平面区域.
随机试题
流体在管内作湍流流动时,其摩擦系数与()等有关。
试述工作流的优点。
After20yearsofmarriage,ahusbandmaystillnotunderstandhiswife.Howisitthatsheisneverata【C1】______forwords?Ho
Thecompanyhascapitalized______theerrorofjudgmentmadebyitsbusinesscompetitor.
英译汉:“texiles”,正确的翻译为( )。
(2015年真题)材料:大班幼儿在玩积木时,出现了自发探究行为,其探究过程与结果如下图所示。问题:在解决问题的过程中幼儿能获得哪些学习经验?
恩格斯在《反杜林论》中指出:“这种历史情况也决定了社会主义创始人的观点。不成熟的理论是同不成熟的资本主义生产状况、不成熟的阶级状况相适应的。”引文中“社会主义创始人”是指()。
在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分。今有4个人统计这次比赛中全部得分的总数,由于有人粗心,其数据各不相同,分别为1979、1980、1984、1985,经核实,其中有一人统计无误,则这次比赛共有多少名
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
Maryjusttoldusaveryfascinatingstory.
最新回复
(
0
)