首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
admin
2018-08-03
50
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
.
选项
答案
记x=[*],由于 f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2[(x
1
,x
2
,x
3
)[*](a
1
,a
2
,a
3
)[*]]+[(x
1
,x
2
,x
3
)[*](b
1
,b
2
,b
3
)[*]] =2x
T
(αα
T
)x+x
T
(ββ
T
)x =x(2αα
T
+ββ
T
)x
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pug4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
设二次型f(x1,x2,x3)=+2x1x3—2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为,求a的值.
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
随机试题
该患者应诊断为白内障术前除进行全身检查和眼部常规检查外,还应检查
龋病的定义是
比例税率的基本特点是()。
下面是阅读课《灰姑娘》的一个片断。在课堂上,老师提出了一系列的问题请大家独立思考回答。她所提的最后一个问题是:“同学们,这个故事里有一处错误,谁能把它找出来?”大家纷纷打开课本,开始认真地阅读,过了一会,一个孩子高高举起手说:“老师,我发现了错误
教师的教育观包括()。
某校参加“祖冲之杯”数学邀请赛的选手平均分数是75分,其中参赛男选手比女选手人数多80%,而女选手比男选手的平均分数高20%,则女选手的平均分是多少?()
在文献检索中,按事件发生发展顺序,由近及远,由新到旧的顺序进行查找的方法是()。
据人口普查司报告说,扣除通货膨胀因素后,1983年中等家庭收入增加了6%。通常情况下,随着家庭收入上升,贫困人数就会减少,然而1983年全国的贫困率是18年来的最高水平。人口普查司提供了两种可能的原因:影响深、持续时间长的1981年到1982年经济衰退的
一个已经公认的结论是,北美洲人的祖先来自亚洲。至于亚洲人是如何到达北美的,科学家们一直假设,亚洲人是跨越在14000年以前还连接着北美和亚洲后来沉入海底的陆地进入北美的,在艰难的迁徙途中,他们靠捕猎沿途陆地上的动物为食。最近的新发现导致了一个新的假设,亚洲
【S1】【S7】
最新回复
(
0
)