首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
admin
2020-02-28
88
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=
的圆面.若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并证明水面高度z与时间t的函数关系:
[z
3
+(z-1)
3
+1]=
;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需时间.
选项
答案
(Ⅰ)由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积y(t)之间的关系是 V(t)=∫
0
z(t)
S(z)dz 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1-z)
2
]. 现由[*]=v
0
及z(0)=0,求z(t). 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1-z)
2
]dz=[*]dt. (*) 两边积分并注意z(0)=0,得 [*][z
3
+(z-1)
3
+1]=[*]. (**) (Ⅱ)求z取何值时[*]取最大值.已求得(*)式即 [*] 因此,求[*]取最大值时z的取值归结为求f(z)=z
2
+(1-z)
2
在[0,1]上的最小值点.由 f′(z)=2χ-2(1-z)=[*] [*]r(z)在z=[*]在[0,1]上取最小值.故z=[*]时水表面上升速度最大. (Ⅲ)归结求容器的体积,即 V=∫
0
1
S(z)dz=π∫
0
1
[z
2
+(1-z)
2
]dχ=[*]π, 因此灌满容器所需时间为[*](秒). 或由于灌满容器所需时间也就是z=1时所对应的时间t,于是在(**)中令z=1得 [*], 即t=[*](秒).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pPA4777K
0
考研数学二
相关试题推荐
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
[*]
求
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.求A的全部特征值;
因为当χ→0时,[*]χ(χχ-1)~χ2所以[*]
设3阶矩阵A可逆,且A-1=A*为A的伴随矩阵,求(A*)-1.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设曲线L的极坐标万程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.看极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
求极限
设I1=(x4+y4)dσ,I2=(x4+y4)dσ,I3=2x2y2dσ,则这三个积分的大小顺序是_________<____________<__________.
随机试题
领导就是向下属发号施令的过程。()
下列关于动脉粥样硬化的叙述,错误的是
A.主要ABO血型不合B.次要ABO血型不合C.主次要ABO血型均不合D.ABO血型相合E.ABO血型不同A型患者移植B型造血干细胞属于
输液中发生肺水肿时吸氧需用20%~30%的乙醇湿化,其目的是()。
结核杆菌的培养时间是
关于混凝土施工缝继续浇筑技术要求的说法,正确的有()。
关于知识产权,下列说法正确的是()。
A、39B、42C、44D、51A2×5+2+8=20,3×7+5+4=30,5×6+3+6=39。
在你的辖区内发生森林大火,你怎么办?
戊戌维新运动失败后,以孙中山为代表的革命派在中国掀起了一场资产阶级革命运动。1894年,孙中山组建的第一个革命团体是
最新回复
(
0
)