首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
This section measures your ability to understand academic passages in English. There are three passages in the section. Give you
This section measures your ability to understand academic passages in English. There are three passages in the section. Give you
admin
2014-09-29
82
问题
This section measures your ability to understand academic passages in English.
There are three passages in the section. Give yourself 20 minutes to read each passage and answer the questions about it. The entire section will take 60 minutes to complete.
You may look back at a passage when answering the questions. You can skip questions and go back to them later as long as there is time remaining.
Directions: Read the passage. Then answer the questions. Give yourself 20 minutes to complete this practice set.
POWERING THE INDUSTRIAL REVOLUTION
In Britain one of the most dramatic changes of the Industrial Revolution was the harnessing of power. Until the reign of George III(1760-1820), available sources of power for work and travel had not increased since the Middle Ages. There were three sources of power: animal or human muscles; the wind, operating on sail or windmill; and running water.
Only the last of these was suited at all to the continuous operating of machines, and although waterpower abounded in Lancashire and Scotland and ran grain mills as well as textile mills, it had one great disadvantage: streams flowed where nature intended them to, and water-driven factories had to be located on their banks, whether or not the location was desirable for other reasons.
Furthermore, even the most reliable waterpower varied with the seasons and disappeared in a drought. The new age of machinery, in short, could not have been born without a new source of both movable and constant power.
The source had long been known but not
exploited
. Early in the century, a pump had come into use in which expanding steam raised a piston in a cylinder, and atmospheric pressure brought it down again when the steam condensed inside the cylinder to form a vacuum. This "
atmospheric engine
," invented by Thomas Savery and
vastly
improved by his partner, Thomas Newcomen, embodied revolutionary principles, but it was so slow and wasteful of fuel that it could not be employed outside the coal mines for which it had been designed. In the 1760s, James Watt perfected a separate condenser for the steam, so that the cylinder did not have to be cooled at every stroke; then he devised a way to make the piston turn a wheel and thus convert reciprocating(back and forth)motion into rotary motion. He thereby transformed an inefficient pump of limited use into a steam engine of a thousand uses. The final step came when steam was introduced into the cylinder to drive the piston backward as well as forward, thereby increasing the speed of the engine and cutting its fuel consumption.
Watt’s steam engine soon showed what it could do. It liberated industry from dependence on running water. The engine eliminated water in the mines by driving efficient pumps, which made possible deeper and deeper mining. The ready availability of coal inspired William Murdoch during the 1790s to develop the first new form of nighttime illumination to be discovered in a millennium and a half. Coal gas rivaled smoky oil lamps and flickering candles, and early in the new century, well-to-do Londoners grew accustomed to gaslit houses and even streets. Iron manufacturers, which had starved for fuel while depending on charcoal, also benefited from ever-increasing supplies of coal; blast furnaces with steam-powered bellows turned out more iron and steel for the new machinery. Steam became the motive force of the Industrial Revolution, as coal and iron ore were the raw materials.
By 1800 more than a thousand steam engines were in use in the British Isles, and Britain retained a virtual monopoly on steam engine production until the 1830s. Steam power did not merely spin cotton and roll iron; early in the new century, it also multiplied ten times over the amount of paper that a single worker could produce in a day. At the same time, operators of the first printing presses run by steam rather than by hand found it possible to produce a thousand pages in an hour rather than thirty. Steam also promised to eliminate a transportation problem not fully solved by either canal boats or turnpikes. Boats could carry heavy weights, but canals could not cross hilly terrain; turnpikes could cross the hills, but the roadbeds could not stand up under great weights. These problems needed still another solution, and the ingredients for it lay close at hand. In some industrial regions, heavily laden wagons, with flanged wheels, were being hauled by horses along metal rails; and the stationary steam engine was puffing in the factory and mine. Another generation passed before inventors succeeded in combining these ingredients, by putting the engine on wheels and the wheels on the rails, so as to provide a machine to take the place of the horse. Thus the railroad age sprang from what had already happened in the eighteenth century.
Directions: Now answer the questions.
In Britain one of the most dramatic changes of the Industrial Revolution was the harnessing of power. Until the reign of George III(1760-1820), available sources of power for work and travel had not increased since the Middle Ages. There were three sources of power: animal or human muscles; the wind, operating on sail or windmill; and running water. Only the last of these was suited at all to the continuous operating of machines, and although waterpower abounded in Lancashire and Scotland and ran grain mills as well as textile mills, it had one great disadvantage: streams flowed where nature intended them to, and water-driven factories had to be located on their banks, whether or not the location was desirable for other reasons. Furthermore, even the most reliable waterpower varied with the seasons and disappeared in a drought. The new age of machinery, in short, could not have been born without a new source of both movable and constant power.
The source had long been known but not exploited. Early in the century, a pump had come into use in which expanding steam raised a piston in a cylinder, and atmospheric pressure brought it down again when the steam condensed inside the cylinder to form a vacuum. This "atmospheric engine," invented by Thomas Savery and vastly improved by his partner, Thomas Newcomen, embodied revolutionary principles, but it was so slow and wasteful of fuel that it could not be employed outside the coal mines for which it had been designed. In the 1760s, James Watt perfected a separate condenser for the steam, so that the cylinder did not have to be cooled at every stroke; then he devised a way to make the piston turn a wheel and thus convert reciprocating(back and forth)motion into rotary motion. He thereby transformed an inefficient pump of limited use into a steam engine of a thousand uses. The final step came when steam was introduced into the cylinder to drive the piston backward as well as forward, thereby increasing the speed of the engine and cutting its fuel consumption.
According to paragraph 2, Watt’s steam engine differed from earlier steam engines in each of the following ways EXCEPT:
选项
A、It used steam to move a piston in a cylinder.
B、It worked with greater speed.
C、It was more efficient in its use of fuel.
D、It could be used in many different ways.
答案
A
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pHfO777K
0
托福(TOEFL)
相关试题推荐
ChooseTWOletters,A-E.WhatTWOthingsdoBradandHelenagreeareweakpointsinthearticle’ssectiononconflictresolution
ChooseTWOletters,A-E.WhatTWOmaincriteriaareusedtojudgethefilmcompetition?AAbilitytopersuade.BQualityofth
Listentothedirectionsandmatchtheplacesinquestions11-15totheappropriateplaceamongA-Eonthemap.HealthCentre
ChooseTWOletters,A-E.WhichTWObenefitsofthisactivitytothestudentsarementionedbytheprofessor?ATheybecomemore
Completethenotesbelow.WriteONEWORDONLYforeachanswer.Episodicmemory-theabilitytorecalldetails,e.g.thetimeand
Completethenotesbelow.WriteONEWORDONLYforeachanswer.Episodicmemory-theabilitytorecalldetails,e.g.thetimeand
Completethenotesbelow.WriteONEWORDONLYforeachanswer.Episodicmemory-theabilitytorecalldetails,e.g.thetimeand
ChooseTHREEletters,A-F.WhichTHREEthingsarethestudentsrequiredtosubmittotheirprofessor?AawrittensummaryBnote
Listenandchoosethecorrectanswer.Thesurveyfoundthatthemajorityofemployeesdrink
Listenandcompletetheinformationbelow.Howmuchdoesthewomanpayforherroom?&______
随机试题
糖尿病肾病合并肺结核宜选用的抗结核药物
电路如图所示,则电流I为()。
建立在社会主义市场经济基础上的产业政策,是政府实行宏观调控的重要手段,既与国家规划相联系,体现规划的(),又能发挥市场机制的作用,保证企业的灵活性,是联结计划与市场两种机制的纽带。
下面不属于索赔费用的是()。
《会计法》行使行政处罚的行政机关是( )。
银行办理个人汽车贷款的内部操作流程包括()。
下列是关于贷款的转让步骤,则正确顺序是()。①挑选出同质的待转让单笔贷款,并将其放在一个资产组合中;②办理贷款转让手续;③对资产组合进行评估;④签署转让协议;⑤双方协商(或投标)确定购买价格;⑥为投资者提供资产组合的详细信息。
传统经验医学正遭遇“不确定性”技术瓶颈,造成医疗资源浪费和医疗效果不尽如人意。相比传统诊疗手段,精准医学具有精准性和便捷性,一方面通过基因测序可以找出疾病相关的突变基因,从而迅速确定对症药物,减少弯路,提高疗效,同时还能够在患者遗传背景的基础上降低药物副作
从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数?
Cross-culturalLivingInadaptingtoanewculture,expecttogothroughthreedistinctstages.Iwillgiveyousomeideas
最新回复
(
0
)